Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

bty

IMPLICATIONS OF THE ADAR ENVIRONMENT
FOR SIMULATION STUDIES

Patricia Friel and Sallie Sheppard
Department of Computer Science
Texas A&M University
College Station, Texas 77843

ABSTRACT

Ada packages to support event and process oriented
simulation have been developed at Texas A&M Univer-
sity. These packages inciude standard facilities such
as queue handiing, random number generation, automatic
statistics collection and simulation control. This
paper provides an overview of the system facilities
followed by an evaluation of the strengths and weak-
nesses of Ada as an implementation language for simu-
lation software. Based on our experience Ada has
appeal as a general purpose language which can be in-
tegrated into larger systems. It is portable among
various computer architectures, it provides a rich
base of constructs in which to implement models, and
offers promise in terms of execution on parallel
architectures.

INTRODUCTION

The development of new simulation approaches and the
development of application programs in the U.S. De~
partment of Defense (DoD) language Ada are parallel
research interests at Texas A&M University. One
natural outgrowth of these twin threads of interest is
a consideration of the implications of the Ada envi-
ronment for simulation studies. As a pilot project in
this area, the Ada packaging concept has been used to
develop a library of simulation support tools that can
be wvariously combined to create simulation systems
supporting either a process or an event orientation.
The event-oriented version supports event simulation
in the general style of SIMSCRIPT I[.5 [1]. The
process~oriented version is based on a design by
Bryant [2]. Both versions have been implemented, and
sample simulations have been executed on a VAX-11/782
using the ANSI Ada/Ed Translator/lInterpreter (Version
1.1.4). The packages that have been developed include
facilities for queue handling, random number
generation, automatic statistics collection, and sim-
ulation control in the two orientation styles. The
system development work that has been done is of
interest primarily for two reasons:

1) It has provided an elementary prototype for an
integrated approach to simulation development.

2) 1t has led to a more general view of the op-
portunities afforded by the Ada environment
for research and development in simulation.

version of the simutation support
library that we have developed has been described in
detail in a previous paper [3], this paper overviews
the entire system and describes in detail only recent
additions and revisions. We then conclude with our
observations about the possible usefulness of the Ada
language to the field of simulation.

Since an earlier

RAda is a registered trademark of the U.S. Government
(Ada Joint Program Office).

SYSTEM DESCRIPTION

The DoD common high-order language project has empha=-
sized the development of the Ada Programming Support
Environment (APSE) as a library of tools available to
aid program development. In a well developed Ada en-
vironment, packages of the sort that we have designed
and implemented for simulation support might be part
of the larger APSE library. The Iibrary approach to
system development implies that a major design objec-

tive is to develop modules that are as general as
possible. To this end, we have attempted to design
packages that are not specific to a particular

simulation orientation, but can be used as building
blocks for various systems; and, for the two orienta-
tions that have been implemented, the concept has
generally worked well. The packages initially devel-
oped were those fundamental to simulation - a queue
handler, a statistics package, a random number genera-
tion package, a clock, and packages for simulation
control. Of these packages, the only type not used in
common by both world views is the control package; al-
though it is reasonable that the simulation control
function might be implemented as a generic package
able to support more than one viewpoint. Abbreviated
listings of the support packages and the two sample
simulations are given in Appendices A and B. Figure |
illustrates the uninstantiated library of packages.

USER MODEL
EVENT ROUTINES
QUEUE SIMULATION
PACKAGE PACKAGE
CLOCK
STATISTICS RANDOH
PACKAGE UHEER
PACKAGE
e]
SYSTEM AS CODE PACKAGES
FIGURE 1

Clock Package
The clock was implemented as a separately packaged

data structure to make it conveniently accessible by
all packages.

Queue Package

The queue package is a modification of the queue pack-

478 Patricia Friel, Sallie Sheppard

age designed by Bryant [2]. The function of the queue
package is to manage a queue of temporary entities in
a simulation. The fact that it is a generic package
allows a simulation writer to desian the record format
for entities that wait in a queue, so the modeler has
complete flexibility to define the number and type of
attributes that are associated with a job type.
Figure 2 illustrates one possible description for a
job that a modeler might define. The instantiation of
package QUE makes &a tailored version of the queue
management package available to handlie a queue of type
PART_A.

type MACHINE is (SAW, DRILL, ROUTER, PLANER);
type INSPECTION_GRADE is (PASS, REJECT, REWORK);
type PART_A is
record
ARRIVAL_TIME : float;
INSPECT_RESULT : INSPECTION_GRADE;
MACHINING_SEQUENCE : array [1..4] of MACHINE;
JOB_ID : integer;
end record;
type PART_A_PTR is access PART_A;

package PART_A_QUE is new QUE
(ENTITY_REC=> PART_A,
PTR_ENTITY=> PART_A_PTR);

Figure 2 - Definition of a Job Type

The Ada typing rules do pose the constraint that only
one type of job (such as PART_A above) can enter a
particular queue. If multiple job types enter a
common queue in the system to be simulated, the
modeler would have to define all jobs as a common
type, and make any differentiations within the record.

Queues are structured within the queue package by
maintaining a circular linked 1ist of records (type
LINK_RECORD) that are defined within the private
portion of package QUE. Each LINK_RECORD contains a
pointer to a record of the job type defined by the
modeler (ENTITY_REC=> PART_A in the example of Figure
2). A record of the simulated time the job entered
the queue 1is also maintained in the LINK_RECORD. Its
use in the collection of queue statistics will be
explained in the section on the statistics collection
facility. The queue is accessed via a header record
of type QUEUE which contains queue information (e.g.
size). Although only FIFO queues are maintained in
this prototype, the package could easily be expanded
to offer the modeler & choice of queueing disciplines.

The operations defined for the queue package include
queue initialization, Jjob entry and exit, and func-
tions to return the current number in the queue or a
boolean value indicating whether the queue is empty.
Since the representation of activities as tasks in the
process orientation implies the possibility of
multiple tasks trying to manipulate the queue at once,
the queue operations of job entry and exit are defined
within a common task (task Q_OPERATIONS) with exctiu-
sive access guaranteed by the select/or construct. To
simplify the user’s view, the entry points within Q_
OPERATIONS are redefined as procedures PUT and TAKE.
The queue operations as defined for the process orien-—
tation will support an event orientation as well. How-
ever, as a practical matter of reducing run times
using the Ada/Ed translator, we used a modified
version of the queue package that contained only pro-
cedures for the event orientation. We hope that this
practical consideration will not be necessary when
using a production Ada compiler.

Random Number Package

Algorithms for uniform random number generation that
depend on high order bits being discarded when an
integer multiplication results in an overfiow (e.qg.
FORTRAN integer multiplication) cannot be used in Ada
programs since the Ada typing constraints dictate that
an unambiguous constraint error message be returned in
this situation [4]. An algorithm for a portable
FORTRAN Uniform (0,1) generator reported by Marse and
Roberts [5], provides one possible alternative. The
generator listed in Appendix A is a slight
modification of this algorithm rendered in Ada. At
present only functions for the Uniform and Exponential
distributions have been implemented.

Statistics Collection Package

The statistics collection facility, package STAT, is a
generic package that may be instantiated to collect
standard statistics on queues or on user defined vari-

ables. An instance of package STAT is tailored to the
objects on which it will collect observations in the
sense that it creates and maintains an array

containing one record for each object.

On subsequent cailts to procedures within the
statistics package, observations will be recorded on
the appropriate record. The data structure used is
shown in Figure 3. STATISTIC, TALLY_VAR, and
ACCUM_VAR are parameters to the generic package. The
STATISTIC parameter permits the user to instantiate
the package with any floating point type; and the
TALLY_VAR and ACCUM_VAR parameters provide subscripts
into the arrays (T_RECORD and A_RECORD) of records.
Records in T _RECORD are used for point collection
statistics, and records in A_RECORD are used for col-
lecting time weighted statistics. The declarations of
A_RECORD and T_RECORD also serve to iinitialize the

records.
private
type STAT_REC is
record

LAST_VALUE : STATISTIC;
NUMBER : STATISTIC;
SUM + STATISTIC;
WEIGHT s STATISTIC;
SUM_OF _SQRS : STATISTIC;

end record;

T_RECORD : T_REC := T_TEC’
(TALLY_VAR’first..TALLY_VAR’last
(WEIGHT => 1.0, others => 0.0));

I
v

A_RECORD : A_REC := A_REC’
(ACCUM_VAR’first..ACCUM_VAR’ last
(others => 0.0);

1
v

Figure 3 - Data Structure for Statistics Collection

Six operations have been defined for the statistics

package:

1) procedure DATA - Called by procedure TALLY or
procedure ACCUM, procedure DATA records obser-
vations.

2) procedure TALLY ~ Called from the package that
instantiated this statistics package, proce-
dure TALLY collects unweighted (or weight = 1)
observations.

3) procedure ACCUM - Called from the instant-
iating package, procedure ACCUM collects time
weighted observations.

4) function MEAN - Computes a mean.

Implications of the Ada Enviromment for Similation Studies 479

5) function VARIANCE - Computer a variance.
6) procedure PRINT_STATS - Prints summary statis-
tics.

Summary statistics are printed only if the modeler
calls for them at the end of the simulation run.
Since the method of handling statistics collection
varies depending on whether the object of statistical
interest is a8 queue or a variable, each will be de-
scribed in turn.

Queue Statistics Summary statistics are collected
automatically by the simulation system. Whenever the
user instantiates & queue package, the instance of
package QUE in turn instantiates a statistics col-
lection package for that queue. Figure 4 shows dia-
gramatically the sequence of instantiations that take
place at compile time.

CLOCK
STAT Y STaT 1 STAT 2 STAT_N
4 4 4 4
USER QUE_1 QUE_2 QUE_N
—. -
USER MODEL

SYSTEM IN ACTION

FIGURE 4

When in the course of the simulation, a call is made
to the PUT or TAKE procedures in the queue package (to
enter or remove a job from a queue), the queue package
procedure will call procedure TALLY or ACCUM to
collect an observation. The recording of the time the
Jjob entered the queue in the LINK_RECORD (see the
Queue Package section) is used to collect time weight-
ed statistics. If the modeler wishes to have the sta-
tistics on this queue printed at the end of the
simulation, he simply calls procedure PRINT_STATS
within the queue package. Procedure PRINT_STATS calls
a corresponding procedure PRINT_STATS within the sta-
tistics package which causes the summary statistics to
be calculated and printed. This indirection 1is nec-
essary to make the statistics collection process
transparent to the modeler. As Figure 4 illustrates,

the wuser is one level removed from any statistics
package.
Statistics on User Defined Variables The automatic

collection of statistics for a queue is easy to imple-
ment because the LINK_RECORD provides a ready
repository for the time information needed and be-
cause one queue package manages one queue, so the num-~
ber of observation records needed is known. The case
of the user defined variables is not quite so simple.
Without a preprocessing step, the simulation support
system has no way of knowing how many variables a
modeler may define, and no way of directly seeing

assignments the user will make to those variasbles. If
the user of the system instantiates a statistics pack-
age directly, he must aiso assume responsibility for
making the appropriate calls to record each obser-
vation. The compromise solution that we chose
involves inserting a package between the specific
simulation code and the statistics package. Package
SPECIAL_STATS parallels package QUE in its function of
removing the modeier from the details of statistics

collection. When SPECIAL_STATS is instantiated, it in
turn instantiates a version of package STAT tailored
for user defined variables. In order to have statis-

tics collected on variables, the modeler must declare
an enumeration type that contains a list of the
variable names. Two subtypes are also declared, one
for standard, unweighted averages, the other for
variabies on which time weighted averages are desired.
The two sets need not be mutually exclusive. Package
SPECIAL_STATS is then instantiated with the enumera-
tion types as parameters. Assignments to these user
defined "variables" are actually made via calls to
procedure ASSIGN in package SPECIAL_STATS. Figure 5
illustrates the declarations required, a package in-
stantiation, and a typical assignment statement.

type USER_VAR is (TIME_IN_SYSTEM, MY_COUNT,
MYSTERY_VAR);

subtype TALLY_VAR is USER_VAR range
TIME_IN_SYSTEM..MY_COUNT;

subtype ACCUM_VAR is USER_VAR range
MY_COUNT. .MYSTERY_VAR;

package MYSTATS is new SPECIAL_STATS
(USER_VAR => USER_VAR,
ACCUM_VAR => ACCUM_VAR,
TALLY_VAR => TALLY_VAR);

ASSIGN (TIME_IN_SYSTEM, SIM_TIME -
float (DEPARTING_JOB.ARRIVAL_TIME));

Figure 5 - Declarations for User Defined Variables

The data structure used by package SPECIAL_STATS is an
array of type float that is subscripted by the
enumeration type USER_VAR. This array, named VARIABLE,
contains the current values for the variables identi-
fied by the enumeration type subscript.

SPECIAL_STATS has two operations. The first, renamed
procedure ASSIGN for the convenience of the user, is
actually entry PROTECTED_ASSIGN in task ASSIGNMENT.
Procedure ASSIGN records the value the user has passed
to it in the VARIABLE array of values for user
variables in the TALLY_VAR or ACCUM_VAR set and calls
the corresponding statistics collection routine in the
STAT package. The assignment operation is implemented
as a task with an entry in order to guarantee exclu-
sive access to the data structure. Otherwise modeler
written tasks might attempt to update variables simul-
taneously. The second operation is a print procedure
identical to procedure PRINT_STATS in package QUE
which passes on the modelers call for printout of
summary statistics to package STAT.

Simulation Control Packages

Regardiess of the world view,
control package is to manage the sequence of events
and maintain the clock. The methods used to accom-
plish this depend on the orientation, so each will be
discussed separately.

the function of the

Event Orientation Conceptually, the simulation manager
should cyclically remove the next notice from a
sequence of scheduled events, update the system clock,
and activate the currently scheduled event. Since the

480

Patricia Friel, Sallie Sheppard

currently scheduled event is a user written procedure
for a specific simulation, the manager needs some way
of being informed of its name. In general, the
scheduler must be able to call modeler written pro-
cedures in varying numbers and with user defined
names. In order to accomplish this basic task, the
control package, EVENT_SIMULATION, is implemented as a
generic package with parameters that effectively
communicate the number and names of event procedures.
The modeler must instantiate EVENT_SIMULATION with an
enumeration type, type NOTICE, that contains a list of
identifiers for the event routines that he has
written. These identifiers are subsequently placed in
event notices via calls to procedure CREATE_EVENT_
NOTICE in the control package. EVENT_SIMULATION must
also be instantiated with the name of a single pro-
cedure as a generic parameter. This procedure
encapsulates all the modeler written routines and
contains a case statement that will activate the event
routine indicated by some member of the enumeration
type event identifiers. When the scheduler removes an
event notice from the chain, it calls the single user
routine with the identifier from the event notice as a
parameter. The user procedure in turn activates the
appropriate event through the case statement.

The data structure used to manage event sequencing is
the traditional one of the linked list of event
notices. The record type, FUTURE_EVENT_NOTICE, is not
visible to the user - as it should not be since he has
no need to manipulate it directly.

The operations defined for the package are procedure
SCHEDULER and procedure CREATE_EVENT_NOTICE. The
function of CREATE_EVENT_NOTICE is to place a FUTURE_
EVENT_NOTICE on the chain; and its parameters are the
scheduled time for the event and the type of event.
The function of SCHEDULER is to remove FUTURE_EVENT
NOTICEs from the chain and call the appropriate pro-
cedure. The parameter to SCHEDULER is the specified
ending time for the simulation.

Process Orientation In the process orientation, the
explicit modeling of time delays (e.g., during a
service activity) in the task representing an activity
requires a different kind of control mechanism. The
task must have some way of suspending itself for a
period of simulated time. The control package,
PROCESS_SIMULATION, provides the support for the
modeler to directly specify time delays. All the
modeler need do is call procedure HOLD in package
PROCESS_SIMULATION (e.g., HOLD (SERVICE_TIME)). In

order to wunderstand how procedure HOLD is able to

suspend a modeler defined task in a specific simula-
tion, it is necessary to examine the data structure
used by the control package. The structure consists
basically of a linked list of event notices similar to
the one used in the event orientation. The difference
lies in the structure of the records that are placed
on the event chain. As shown in Figure 6, each record
contains a task of type SYNCH.

When procedure HOLD is called, it places a record of
type FUTURE_EVENT_NOTICE on the event chain, then
calls the entry WAIT in SIGNAL. Since task SIGNAL is
now activated, but unable to accept the call to WAIT
until its entry SEND is called, procedure HOLD is
unable to return to its calling task; so the calling
task is likewise delayed. ‘Because the code for
procedure HOLD is reentrant, many activations of HOLD
may coexist. The calling task will remain suspended
until task SCHEDULER removes the notice from the chain
and calls entry SEND in SIGNAL. Now the calling task
is able to complete, followed immediately by HOLD and
the calling task. This sequence of calls is the

.

kernel of the original design by Bryant [2].

task type SYNCH is task body SYNCH is
entry SEND; begin
entry WAIT; accept SEND;

end SYNCH; accept WAIT;
end SYNCH;
type FUTURE_EVENT_NOTICE is
record
SCHED_TIME ¢ TIME;
SIGNAL : SYNCH;
NEXT F_EVENT_LINK;

type F_EVENT_LINK is access FUTURE_EVENT_NOTICE;

Figure 6 - Data Structure Used by Scheduler

Parallel processing implies by nature the possibility
of certain rather subtle problems with exclusive
access and sequencing; and some modifications to
Bryant’s basic design had to be made to handle these
problems. Since tasks running in parallel may make
simuitaneous calls to procedure HOLD, simultaneous
attempts may be made to place event notices on the
chain. To guarantee exclusive access to the event
list, the code sections to enter and remove a record
from the chain reside in a task, EVENT_CHAIN, and are
guarded by the select/or construct.

Sequencing is another probiem. Task SCHEDULER, which
is responsible for removing notices from the event
chain and reactivating the appropriate tasks in the
specific simulation code, will resume at one time all
tasks which are scheduled for activation at the same
simutation time. These tasks in turn will need to
schedule themselves for subsequent resumptions, but
since both they and the SCHEDULER are running in
parallel, the SCHEDULER could resume one out of order.
For example, suppose task ALPHA and task BETA are ex-
ecuting. Task ALPHA calls procedure HOLD and schedules
itself for resumption at time 900 which is the ear-
ITiest time on the event chain. Task SCHEDULER
promptly . resumes task ALPHA. Now task BETA has
reached the portion of its code in which it calls pro-
cedure HOLD and schedules itself for resumption at
time 850. There is the problem. The problem is
solved by having the SCHEDULER keep a count of all
active tasks. Then no tasks are reactivated until the
currently active tasks have completed their
scheduling. The NUMBER_ACTIVE variable in tasks
SCHEDULER keeps track of the active task count.

One other problem that is latent in parallel process-

ing and 1is of particular concern in the context of
simulation 1is that of determinancy among consecutive
runs. Although the scheme described above prevents

the SCHEDULER from reactivating tasks out of order
within a particular run, there is nothing to prevent
the tasks from scheduling themselves to resume at dif-
ferent times in different runs because they have
called the random number generator in a different
order. (The Ada/Ed translator quite properly emulates
true parallelism by varying the interleaving of code
for tasks sections in different program executions.)
While one execution may model the subject of the si-
mulation as well as another, subsequent executions
must vyield identical results in order for. any sensi-
tivity analysis to be meaningful. The solution that
we chose - not necessarily the best one - was to re-
quire each simulation task to instantiate its own
random number package, each with a different seed
value. In this way, each task in multiple program ex-
ecutions will draw random numbers in the same order,
and the simulation will be determinant from one run to
the next. What effect this solution may have on the

Implications of the Ada Enviromment for Simulation Studies her

charactistics of the actual stream of numbers selected
in a simutation is an interesting question. It should
also be noted that although this solution causes
scheduling to occur in a determinant way, it in no way
guarantees that statistics gathered on user defined
variables will be consistent from one execution to the
next. If dependencies should exist between tasks in
assigning values to such variables, the possibility
exists of different assignments or different orderings
of assignments being made on subsequent runs. We have
not discovered a way to protect a user of the
simulation packages from this kind of potential error.

IMPLICATIONS OF THE ADA ENVIRONMENT

Few would dispute the contention that simulation is an
extremely powerful and fiexible tool for pilanning in a
wide variety of contexts. From manufacturing systems
to street and highway design to prison facilities
planning to the ubiquitous checkout stand, simulation
can support better decision making. Yet it remains an
underutilized tool for several reasons.
Perhaps the greatest of the these is that simulation
languages have traditionally been developed as spe-
cialized, stand alone systems that do not accommodate
themselves well to the context in which they must
function. The 1language is different from that used
for, say, process control in a factory; it is not de-
signed to interface with the resident database system;
it is one more language that s potential user must
learn; and it takes considerable time and expertise to
develop a model for simulation even when the need for
one has been identified. In short, it does not inte-
grate efficiently into the larger system it serves.
The IBM publication, Communications Oriented Produc-
tion Information and Control System (COPICS) [6],
gives a vivid description of the kind of manufacturing
situation in which simulation could be particulariy
useful.,

"The problems of lead time,
capacity are interrelated;
self-perpetuating...for

work-in-process, and
in' fact; they can be
example, as a company’s
business improves, more orders are released to
the plant. If the work input is greater than the
work capacity, and gueues build up at the work
centers, Jjobs have to wait longer. As a result,
customer orders are late. The foreman feels that
given two weeks more lead time they could com~
plete orders on schedule, so the manufacturing
lead times are accordingly increased by two

weeks. New shop orders are now released two
weeks earlier, generating an additional two
weeks’ volume of work on the plant floor. This

increases both work-in-process and queue length
some more. Lead times become longer than ever,
and orders are still finished behind schedule."

This famitiar scenario constitutes a vicious cycle
stoked by myopic decision making. The need for
readily accessible planning tools is evident. If the
foreman above must be relied upon to identify the need
for forecasting tools, collect the necessary data to
determine appropriate parameters, and initiate the
development of a simulation, it is not difficult to
imagine that the simulation may never be done. If, on
the other hand, the developing vicious cycle may be
flagged by a computerized moitoring system; if both
shop floor data and management planning information to
which the foreman may not have access may be
channelled directly to a decision support system of
which a simulation system is an integrated component,
the tool may be utilized and the vicious cycle broken.

Several design features of Ada seem particularly
applicable to the development of such integrated
systems. It is designed for real time processing.
The APSE or library approach to system development fs
intended to supply both the flexibility and the
capability for coordinatation implicit 1in the design
of large systems of functionally different but
integrated components. And the syntax of the language
(in particular the specification part) prescribes the
clean documentation and carefully defined interfaces
that are needed for large and complex systems.

Another impediment to more widespread use of
simulation is the lack of portability of models
between computers. When a firm invests in the devel-
opment of a large model, there is often a need to
excute the model on different computer systems, either
because of hardware differences between sites or be-
cause of changes in the hardware during the 1life of
the model. One of the main design goals of Ada is
portability not only over different computer architec-
tures. Such promise of portability makes the model
development investment more attractive since it
expands the opportunities for model usage beyond that
of the original host computer.

A third reason for underutilization of the simulation
tool is simply that any one simulation language chosen
may not have the constructs necessary to model
naturally many different subsystems within the same
environment. Can it be used to produce a conceptually
straightforward model of a production 1ine? Of a job
shop? Of a building (as opposed to manufacturing)
process? Of the control systems in a plant? Of the
planning process itself? Of some combination of the
above in the same simulation? Does it support various
world views? Again the packaging concept, the "build-
ing blocks" approach, of Ada may prove useful in
developing simulation systems that can be tailored to

an environment. There is at least the opportunity to
experiment.
The time it takes to execute a simulation of any size

is a fourth impediment to the extensive use of simu-
ulation in industry. One obvious way to reduce
overall run times {is to use paraliel processors.
However, procedures for subdividing simulation systems
into components that can run effectively in paraliel
are not yet well understood, and provide a fertile
area for research (such research currently is underway
at Texas A&M University [7,8,91). Both the tasking
feature of Ada and the capability of the ANSI Ada/Ed
Translator/Interpreter to emulate actual parailel ex-
ecution offer opportunities to explore the possibil-
ities of concurrent processing in simulation systems.
An interesting approach to the design of a distributed,
simulation system might be to first model the proposed.
design on a single processor system utilizing an Ada’
task to model the activities on each processor. Since
the transiator will emulate paraltel execution among
the tasks (subsequent runs will not yield identical
results), the translator itself could be used to aid
in modeling the systems and allowing one the opportu-
nity to collect data on communication among the
processors. Various configurations might be modeled
in order to study the effects of design changes prior
to actually building the system. This approach seems
at least to embody the spirit of simulation.

We are not by any means touting Ada as the final
answer to effective simulation development. In fact,
we have found both strengths and weaknesses of the
language in the course of our learning experience with
Ada.

482

Patricia Friel, Sallie Sheppard

One of the goals of the designers of Ada was to create
a language that would in its syntax enforce the devel-
opment of reliable code. The result was the strong
typing constraints that unquestionably serve the re-
1iability goal, but that also result in some cost in
flexibility. Even in the limited development work
that we have done, the language has more than once
forced us to choose a less elegant solution than the
one we Would have liked as the following cases illus-
trate.

In the design of the SCHEDULER for the event oriented
control package, the problem arose of how to inform
the SCHEDULER of the names of the user written event
routines so that the procedures could be activated by
the SCHEDULER during execution of a simulation. With-
out a preprocessor step, the procedure names must
somehow be passed as parameters to the EVENT_SIMU-
LATION package or to procedure CREATE_EVENT_NOTICE.
The nice solution would have the model routines pass a
pointer to the appropriate procedure as a parameter to
CREATE_EVENT_NOTICE which would then place the pointer
in the notice on the event chain. The SCHEDULER would
simply activate the scheduled event via the pointer.
Ada does permit pointers to tasks (though not proce-
dures), and a procedure could be disguised within the
begin/end block of a task rendezvous. However, for
CREATE_EVENT_NOTICE to accept a task pointer as a pa-
rameter, it must know the type of the task to expect.
The need to know task type names has been substituted
for the need to know procedure names. In this case,
the strong typing of the language has both protected
us from passing meaningless pointers and frustrated
our design goal of isolating the modeler from the
implementation. Another possibility would have been
to pass the procedure names as parameters to the
generic package EVENT_SIMULATION, but the limitation
to a one to one relationship between formal and actual
procedure parameters prevents this solution from being
a viable one. [t 1is hardly practical to place an
arbitrary limit on the number of procedures a user may
write.

Another instance that could directly affect a user of
the packages is the limitation of one job type to one
Jjob queue mentioned above in the queue package
section.

Task termination proved somewhat probiematic within
the context of simulation. To be useful in a simui-
ation, tasks must be allowed to loop “"forever" or at
least for variable lengths of time, so they cannot
terminate by completing. The modeler must abort any
tasks that he has written before the simulation can
terminate. We wused a procedure END_SIMULATION within
package PROCESS_SIMULATION to abort the remaining
tasks in PROCESS_SIMULATION. However the tasks within
package QUE and SPECIAL~STATS can only be aborted from
the modeler package since they are generic packages
and specific instances of them can only be seen by the
instantiating package.

In general, the drawbacks to simulation system devel-
opment imposed by the language that we have encoun-
tered fall into two categories - typing constraints
and "vision" problems. The SCHEDULER’s problem with
being able to "see" user written event routines and
the problem with task termination fall within the
vision classification. However, from the point of
view of a potential user of the system, there are
actually few details outside of the logic of his event
routines with which he must concern himself. There
are a number of declarations and instantiations that a
modeler must make. The obvious extension to the
system that would most simplify the modeler’s task

would be the development of an interactive development
too! that would query the user and write the decia-
rations and instantiations for him. It could be &
much more general tool within the APSE - including
perhaps a syntax directed editor, a |library manager,
and access to a database or knowliedge base. Such a
tool would also imply the opportunity for using a pre-~
processor step to solve the vision problems. We have
not chosen the preprocessor approach heretofore partly
because we wished to test the flexibility of the lan-
guage itself. Although we have not found Ada to
provide an elegant solution to every situation, we do
believe that the language design extends the realm of
the possible.

On the positive side, the generic packaging concept
clearly redefines the meaning of reusable software.
In the case of this work, it was the single most use-
ful feature of the language. A comparison of figures
1 and 4 should make the power of the concept evident.
With respect to further research, the tasking feature
and the emulation of parallelism provided by the
transiator offer the most promise. Tasking provided
the key to the design of the process oriented system
originally proposed by Bryant and extended by us; and
the emulation by the interpreter of parallel execution
facilitated our discovery and understanding of the
problems of exclusive access and determinancy latent
in the system. Certainly there is a8 need for the
development of debugging tools specifically designed
for parallel processing, and the translator could aid
such development work on a single processor system. A
third feature that we will classify as very positive
is the specification part of packages. The clarity in
terms of interfaces among components provided by this
feature might be rated nearly indispensable if one
were to undertake the kind of large scale integrated
system development that we have suggested,

We suggested earlier that one of the primary problems
in the field of simulation was that we have not yet
learned how to smoothly interface a simulation system
to the Jlarger system it serves. Whether or -not Ada
ever becomes a widely used language in industry, it
nevertheless offers the opportunity to explore new
approaches to the development of integrated systems.
If Ada and simulation are indeed a matched pair, it
may be because the environmental approach encouraged
by Ada is precisely what simulation needs to further
move it into the world of business and industry.

ACKNOWLEDGEMENT

The authors would 1ike to acknowledge the work of Ms.
Donna Reese on both the design and implementation of
the initial system. Her continued interest and
suggestions have been valuable to the project.

This material
the National
8215550.

is based on work supported in part by
Science Foundation under Grant NO. ECS-

Implications of the Ada Enviromment for Simlation Studies

APPENDIX A
PROCESS ORIENTATION

package CLOCK is
SIM_TIME
end CLOCK;
package body CLOCK is
begin
null;
end CLOCK;
with CLOCK, use CLOCK, text_.io;
generic
type STATISTIC
type TALLY VAR is (<>);
type ACCUM_VAR is (¢>);
package STAT is
type STAT_REC is private;
type T_REC is array (TALLY_VAR) of STAT_REC;
type A_REC is array (ACCUM_VAR) of STAT REC;

float := 0.0;

text_io;

is digits <>

procedure TALLY (ID in TALLY_VAR;
VALUE in STATISTIC);

procedure ACCUM (1D in ACCUM_VAR;
VALUE in STATISTIC);

procedure DATA (STATS in out STAT_REC;
DATA in STATISTIC);

function MEAN(STATS:in STAT_REC)
return STATISTIC;
function VARIANCE (STATS: in STAT_REC)
return STATISTIC;

procedure PRINT_STATS;
package OUT_STAT is new float_io (STATISTIC);
package OUT_TALLY is

new enumeration_io (TALLY_VAR);
package OUT_ACCM is

new enumeration_io (ACCUM_VAR);

private
type STAT_REC is
record
LAST_VALUE STATISTIC;
NUMBER STATISTIC;
SUuM STATISTIC;
WEIGHT STATISTIC;
SUM_OF_SQRS STATISTIC;
end record;
T_RECORD T_REC :=
T_REC’ (TALLY_VAR’first..TALLY_VAR’last =>
(WEIGHT => 1.0,
others => 0.0));
A_RECORD : A_REC := A_REC’ (ACCUM_VAR’first..
ACCUM_VAR’last => (others => 0.0));
end STAT;

package body STAT is

procedure DATA (STATS in out STAT_REC;

DATA in STATISTIC) is
begin
STATS .NUMBER := STATS.NUMBER + STATS .WEIGHT;
STATS.SUM := STATS.SUM + STATS.WEIGHT * DATA;

. STATS.SUM_OF_SQRS := STATS.SUM_OF_SQRS +
STATS .WEIGHT * DATA * DATA;
end DATA;

procedure TALLY (ID

in TALLY_VAR;

VALUE in STATISTIC) is
begin
DATA (T_RECORD (ID), VALUE);
end TALLY;

483

procedure ACCUM (1D
VALUE

in ACCUM_VAR;

in STATISTIC) is

begin

A_RECORD (ID).WEIGHT := STATISTIC(SIM_TIME)
- A_RECORD (1D).WEIGHT;

DATA(A_RECORD(ID), A RECORD(ID).LAST_VALUE);

A_RECORD (1D).LAST_VALUE := VALUE;

A_RECORD (ID).WEIGHT := STATISTIC(SIM_TIME);

end ACCUM;

in STAT._REC)
return STATISTIC is

function MEAN (STATS

begin
if STATS.NUMBER /= 0.0 then
return STATS.SUM / STATS.NUMBER;
else
return 0.0;
end if;
end MEAN;

function VARIANCE (STATS: in STAT_REC)
return STATISTIC is
begin
if STATS.NUMBER /= 0.0 then
return {STATS.NUMBER * STATS.SUM_OF_SQRS -
STATS.SUM * STATS.SUM) / (STATS.NUMBER *
(STATS .NUMBER ~ 1.0));
else return 0.0;
end if;
end VARIANCE;

procedure PRINT_STATS
begin
cheader statements>
for INDEX in TALLY_VAR
loop
OUT_TALLY.put (INDEX);
OUT_STAT.PUT (MEAN(T_RECORD(INDEX)));
OUT_STAT . PUT (VARIANCE (T_RECORD(INDEX))) ;
end loop;
for INDEX in ACCUM_VAR
loop
ACCuM (INDEX, 0.0);
OUT_ACCWM. put (INDEX) ;
OUT_STAT.PUT (MEAN(A_RECORD(INDEX)));
OUT_STAT . PUT (VARIANCE (A_RECORD(INDEX))) ;

is

end loop;
end PRINT_STATS;
end STAT;

with STAT, CLOCK; use CLOCK;
generic
type USER_VAR is (<¢>);
type TALLY_VAR is (<>);
type ACCUMLVAR is (¢>);
package SPECIAL_STATS is
type USER_VAR_RECORD is array
(USER_VAR) of float;
VARIABLE: USER_VAR_RECORD := USER_VAR_RECORD’
(USER_VAR’first..USER_VAR’last => 0.0);
task ASSIGNMENT is
entry PROTECTED_ASSIGN (SUB
VALUE

in USER_VAR;
in float);
end ASSIGNMENT;

procedure ASSIGN (SUB: in USER_VAR; VALUE:in
float) renames ASSIGNMENT.PROTECTED_ASSIGN;

procedure PRINT_STATS;

end SPECIAL_STATS;

package body SPECIAL_STATS is
package MODELER_STATS is new STAT

(STATISTIC => float, TALLY_VAR => TALLY_VAR,

48y

Patricia Friel, Sallie Sheppard

task body ASSIGNMENT is

begin
loop
accept PROTECTED_ASSIGN(SUB in USER_VAR;
VALUE in float) do
VARIABLE (SUB) := VALUE;

begin
i% TALLY_VAR (SUB) in TALLY_VAR then
TALLY (TALLY_VAR (SUB), VALUE);
end if;
exception
when constraint_error =>
end;
begin
if ACCUM_VAR (SUB) in ACCUM VAR then
ACCUM (ACCUM_VAR (SUB), VALUE);
end if;
exception
when constiaint_error =»
end;
end PROTECTED _ASSIGN;
end loop;
end ASSIGNMENT;
procedure PRINT_STATS is
begin
MODELER_STATS . PRINT_STATS ;
end PRINT_STATS;
end SPECIAL_STATS;
with STAT, CLOCK;
generic
type ENTITY_REC is private;
type PTR_ENTITY is access ENTITY_REC;
package QUE is
type QUEUE is private;
procedure PRINT_STATS;
—— Initialize a queue.
procedure INIT (Q:
~— Operations on queue
task Q_OPERATIONS is
entry PUT_IN (ENTITY: in PTR_ENTITY;
Q: in out QUEUE);
in out QUEUE;
in out PTR_ENTITY);

null;

null;

use CLOCK;

in out QUEUE);

entry TAKE OUT (Q:
ENTITY:
end Q_OPERATIONS;
--Reference Q_OPERATIONS entries as procs
procedure PUT (ENTITY: in PTR_ENTITY;
Q: in out QUEUE) renames
Q_OPERATIONS .PUT_IN;
procedure TAKE (Q: in out QUEUE; ENTITY:
in out PTR_ENTITY)
renames Q _OPERATIONS.TAKE OUT;
function IS_EMPTY(Q:in QUEUE)return BOOLEAN;
function NUMBER_IN (Q: in QUEUE)
return integer;
private

—— A queue has records of type link_record.

——Each link_record holds a ptr to an entity.

type LINK_RECORD;
type LINK is access LINK_RECORD;
type LINK RECORD is

record
NEXT, PREV: LINK;
ENTITY PTR_ENTITY;
TIME_Q_ENTERED float;
end record;
type QUEUE is
record
HEAD LINK;
SI1ZE INTEGER ;
EMPTY BOOLEAN;
end record;
end QUE;

package body QUE is

type TALLY Q is (QUEUE_TIME);
type ACCUM_Q is (QUEUE_LENGTH);
——Instantiate a STAT package for queue
package QUEUE_STATS is new STAT
(STATISTIC =» float,TALLY_VAR =»> TALLY_Q,
ACCUMLVAR => ACCUM Q) ;
use QUEUE_STATS;
procedure INIT (Q: in out
begin -

QUEUE) is
initialize q

-~Allocate head node of queue and set ptrs
—— 10 represent an empty queue

Q.HEAD := new LINK_RECORD;
Q.HEAD.NEXT = Q.HEAD;
Q.HEAD.PREV = Q.HEAD;

Q.S1ZE = 0;

Q.EMPTY = TRUE;

end INIT;

task body Q_OPERATIONS is
HOLDER: LINK;
begin
loop
select
accept PUT_IN (ENTITY: in PTR_ENTITY;
Q: in out QUEUE) do
Q.SIZE Q.SIZE + 1;
Q.EMPTY FALSE;
——Collect statistics on queue length.
ACCUM (QUEUE_LENGTH, float (Q.SIZE));
—~ The 1list that represents the queue
~~ consists of holder records that contain
~— pointers to the actual gqueue members.

-— Put entity at end of g

HOLDER := new LINK_RECORD;
—— Set the pointer to the job and record
——the time in queue.

HOLDER . ENTITY := ENTITY;
HOLDER.TIME_Q ENTERED := SIM_TIME;

~=~ Set linked list pointers to add this

holder to the end of the queue.
HOLDER . PREV = Q.HEAD.PREV;
HOLDER . PREV .NEXT = HOLDER;
HOLDER .NEXT = Q.HEAD;
Q.HEAD.PREV = HOLDER;
end PUT_IN;
or
accept TAKE OUT (Q: in out QUEUE;
ENTITY: in out PTR_ENTITY) do

if not Q.EMPTY then

Q.SIZE = Q.S1ZE - 1;

Q.EMPTY := Q.8SIZE = 0;

—-Unlink the first holder record.

HOLDER Q.HEAD .NEXT;

Q.HEAD .NEXT := HOLDER .NEXT;
Q.HEAD.NEXT.PREV := Q.HEAD;
—~Collect statistics on queue length
——and time in queue.
ACCUM (QUEUE_LENGTH, float (Q.SIZE));
TALLY (QUEUE_TIME, SIM_TIME -

HOLDER . TIME_Q_ENTERED) ;
~-Return a ptr to the entity removed

ENTITY := HOLDER.ENTITY;
else

ENTITY := NULL;

end if;

end TAKE_QUT;
end select;
end loop;

end Q_OPERATIONS;

in QUEUE)
return BOOLEAN is

function IS_EMPTY (Q:

begin
if Q.EMPTY then

485

Implications of the Ada Enviromment for Simulation Studies
)

return true;
else
return false;
end if;
end IS_EMPTY;

function NUMBER_IN(Q:in QUEUE)
return integer is
begin
return Q.SIZE;

end NUMBER_IN;

end QUE;
generic

SEED in integer := 1;
package RANDOM is

function LN (X in float;
N : in integer := 10) return float;
function UNIFORM (LOW in float := 0.0;

HIGH in float :=
function EXPONENTIAL
(LAMBDA:in float) return float;

1.0) return float;

end RANDOM;
package body RANDOM is
SEED_VAL : integer := SEED;
function LN (X in float;
N : in integer := 10) return float is
IN_X : float;
X_POINT float := 1.0;
INCREMENT float := (X - 1.0)/float(N);
ACCUMULATOR float := 1.0;
MULTIPLIER float := 4.0;
DIV_3N fioat := (3.0 * float (N));
begin
for INDEX in 1t..(N - 1) loop
X_POINT := X_POINT + INCREMENT;
ACCUMULATOR := (1.0 / X_POINT) *
MULTIPLIER + ACCUMULATOR;
if MULTIPLIER = 4.0 then
MULTIPLIER := 2.0;
else MULTIPLIER := 4.0;
end if;
end loop;
ACCUMULATOR := ACCUMULATOR +

(1.0 / (X_POINT + INCREMENT));

IN X := ({(X - 1.0) 7/ DIV_3N) * ACCUMULATOR;
return LN_X;
end LN;
function UNIFORM (LCW in float := 0.0;
HIGH : in float := 1.0) re¢turn float is
SEED : integer := 2096730329;
B2E1S integer := 32768;
B2E16 integer := 65536;
MODULUS integer := 2147483647;
MULTIPLIER integer := 24112;
HIGH_15, HIGH_31, LOW_15, LOW_PRODUCT,
OVERFLOW integer;
RAND float;
begin
for INDEX in 1..2
loop
HIGH_15 SEED / B2El6;

LOW_PRODUCT := (SEED - HIGH_ 15 * B2E16)
* MULTIPLIER;

LOW_15 := LOW_PRODUCT / B2E16;

HIGH_31 := HIGH_15 * MULTIPLIER + LOW_15;
OVERFLOW := HIGH_31 / B2E15;
SEED := (((LOW_PRODUCT - LOW_15 * B2E16)

- MODULUS) + (HIGH_31 - OVERFLOW *
B2E15) * B2E16) + OVERFLOW;
if SEED < 0 then
SEED := SEED + MODULUS;
end if;

MULTIPLIER := 26143;
end loop;
MULTIPLIER := 24112;
RAND := float (2 * (SEED / 256) + 1)

/ 16777216.0;
return ((HIGH - LOW) * RAND + LOW);
end UNIFORM;

function EXPONENTIAL (LAMBDA in float)
return float is

RAND float;
begin
for INDEX in 1..3
loop
begin
return -LAMBDA * LN (UNIFORM) ;
exit;

exception
when NUMERIC_ERROR =>
null;
end;
end loop;
end EXPONENTIAL;
end RANDOM;
with CLOCK, text_jo; use CLOCK,
package PROCESS_SIMULATION is
type TIME is digits 5 range —1.0..float’large;
task type SYNCH is
entry WAIT;
entry SEND;
end SYNCH;
——future_event_notice describes when a held
——~process should be restarted. It contains
—-—a variable of type synch used to delavy
-—a held process, the time the process should
--be resumed and a ptr to the next notice;
type FUTURE_EVENT_NOTICE;
type F_EVENT_LINK is access FUTURE_EVENT_NOTICE;
type FUTURE_EVENT_NOTICE is

record

SCHED_TIME TIME; —-simulation time of task
SIGNAL ¢ SYNCH; -- used to delay task
NEXT F_EVENT_LINK; -~points to next notice

end record;
procedure HOLD (DELAY_TIME: in TIME);
—~Scheduler is the simulation control routine.
——scheduler.start is called to begin simulation.
~~scheduler.next communicates between
~—procedure schedule and the scheduler, and to
——allow a simulation task that is going to
~—terminate without calling hold to inform the
-—scheduler to proceed with the next task.
task SCHEDULER is
entry START(N: in integer);
entry NEXT;
entry SPAWN;
entry WAIT;
end SCHEDULER;
-—END_SIMULATION terminates
procedure END _SIMULATION;
-—task EVENT_CHAIN manages future events list
task EVENT_CHAIN is
entry INSERT (NEW_NOTICE:
entry REMOVE;
end EVENT_CHAIN;
end PROCESS_SIMULATION;
package body PROCESS_SIMULATION is
——first_f_event — head of the events chain.
FIRST_F_EVENT: F_EVENT_LINK := NULL;
type ACTIVE_TASKS is range O..integer’last;
NUMBER _ACTIVE: ACTIVE_TASKS;
INDEX: ACTIVE_TASKS;
task body SYNCH is

active tasks.

in F_EVENT_LINK);

486

Patricia Friel, Sallie Sheppard

begin
accept SEND;
accept WAIT;
end SYNCH;
task body EVENT_CHAIN is
TRAILING_PTR F_EVENT_LINK;
LOOP_PTR F_EVENT_LINK;
begin
loop
select
accept INSERT(NEW _NOTICE:in F_EVENT_LINK)do
if FIRST_E EVENT = null then

FIRST_E_EVENT := NEW_NOTICE;
NEW_NOTICE .NEXT = null;

else

TRAILING_PTR = null;
LOOP_PTR = FIRST_F_EVENT;
loop

if NEW NOTICE.SCHED_TIME «
LOOP_PTR.SCHED_TIME then
if TRAILING_PTR = NULL then

NEW_NOTICE.NEXT := FIRST_F_EVENT;
FIRST_F_EVENT := NEW_NOTICE;
EXIT; -- leave enclosing loop

else
~— Insert after trailing ptr

NEW _NOTICE .NEXT := LOOP_PTR;
TRAILING_PTR.NEXT := NEW _NOTICE;
EXIT;
end if;
end if;
—— No. Advance down list.
TRAILING_PTR := LOOP_PTR;
LOOP_PTR := LOOP_PTR .NEXT;
—— Check for insert at end of list.
if LOOP_PTR = null then
TRATLING_PTR.NEXT := NEW_NOTICE;
NEW_NOTICE.NEXT = null;
EXIT;
end if;
end loop;
end if;
end INSERT;

or

accept REMOVE do
if FIRST_F _EVENT /= null then
~—~Advance the simulation time to

——when the delayed task should be resumed.

SIM_TIME := float(FIRST_F_EVENT.SCHED_TIME)
NUMBER_ACTIVE := 0;
loop

—~Task delayed by future_event_notice

~— calls scheduler.next or the task
—- informs us it is not going to continue
~— by calling scheduler.next.
INDEX := 0;
loop
select
accept NEXT;
INDEX := INDEX + 1:
or
accept WAIT;
NUMBER_ACTIVE
or
accept SPAWN;
NUMBER_ACTIVE :=
end select;
if INDEX=NUMBER_ACTIVE then exit;end if;:
end loop;
——If future event set is non—empty,
~—the next future event notice and
—-—resume the task described by that notice.
EVENT_CHAIN.REMOVE;
end loop;
end SCHEDULER;

NUMBER_ACTIVE - 1;

NUMBER_ACTIVE + 1;

pick

procedure HOLD (DELAY_TIME in TIME) is
NEW_NOT1CE : F_EVENT_LINK;
begin

~— Create a new future event notice
NEW_NOTICE = new FUTURE_EVENT_NOTICE;
NEW_NOTICE.SCHED_TIME := TIME
(SIM_TIME) + DELAY_TIME;
——Insert the event notice on the chain
EVENT_CHAIN. INSERT (NEW_NOTICE);
SCHEDULER .NEXT;
NEW_NOTICE.SIGNAL.WAIT;
end HOLD;
procedure END SIMULATION is
begin
abort SCHEDULER;
while FIRST_F_EVENT /= null

loop

abort FIRST_F_EVENT.SIGNAL;

FIRST_E _EVENT := FIRST_F_EVENT.NEXT;
end loop;

abort EVENT-CHAIN;
end END_SIMULATION;
end PROCESS_SIMULATION;

with CLOCK,PROCESS_SIMULATION,QUE,RANDOM, STAT,
SPECIAL,_STATS, text_io;

use CLOCK, PROCESS_SIMULATION, text_io;

—~has executed a signal.wait call. Start procedure EXAMPLE SIMULATION is

—=task up by executing a signal.send.
FIRST_F_EVENT, SIGNAL. SEND;
NUMBER_ACTIVE := NUMBER_ACTIVE + 1;
——Advance the head of the future event
——set to the next future event notice.
FIRST_F_EVENT := FIRST_F_EVENT.NEXT;
if float (FIRST_F EVENT.SCHED_TIME) >
SIM . TIME then exit; end if;
end loop;
end if;
end REMOVE;
end select;
end loop;
end EVENT_CHAIN;

task body SCHEDULER is
begin

accept START(N: in integer) do

NUMBER_ACTIVE := ACTIVE_TASKS(N);

end START;

loop —— forever

~=~ Wait until either the task we started

RUN_TIME: constant := 25.0; —— run for time 10
LAMBDA constant = 2.0; —— interarrival
MU constant = 1.5; —— service time

~— Customers in the
~—=variables of type
type JOB is

system are represented by
job. ’

record
ARRIVAL TIME simulation.TIME;
JOB_ID : NATURAL;

end record;
type JOB_PTR is access JOB;
package JOB_QUEUE is new
QUE (ENTITY_REC=> JOB,

PTR_ENTITY=> JOB_PTR);
WAITING_QUEUE : JOB_QUEUE.QUEUE;
JOB_IN_SERVICE boolean := false;

type USER VAR is (TIME_IN_SYSTEM,
MY_COUNT, MYSTERY_VAR) ;
subtype TALLY VAR is USER_VAR
range TIME_IN_SYSTEM. .MY_COUNT;
subtype ACCUM_VAR is USER_VAR
range MY_COUNT..MYSTERY_VAR;

Implications of the Ada Environment for Simulation Studies

package MYSTATS is new SPECIAL _STATS
(USER_VAR => USER_VAR,
ACCUM VAR => ACCUM_VAR,
TALLY_VAR => TALLY_VAR);
use MYSTATS;
task ARRIVAL is
entry START;
entry STOP;
end ARRIVAL;
task SERVICE is
entry START;
entry WAKEUP;
end SERVICE;
~—Entry start is
——service.wakeup
—-—-process at the

task body ARRIVAL is

used to initiate simulation.
is used to restart service
end of an idle period.

NEW_JOB JOB_PTR;
ARRIVAL_COUNT INTEGER := O;
INTER_ARRIVAL_TIME TIME;
ARRIVAL_NOTICE F_EVENT_LINK;

package A _RAND is new RANDOM (SEED => 1);
use A_RAND; .
begin
accept START; --Wait for simulation start.
INTER_ARRIVAL_TIME := TIME
(A_RAND.EXPONENTIAL (LAMBDA)) ;
HOLD(INTER_ARRIVAL_TIME) ;

loop ~— forever
—-— Create a new job.
NEW_JOB := new JOB;

—— Set attributes of the new job.
NEW_JOB.ARRIVAL _TIME := TIME (SIM_TIME);
ARRIVAL_COUNT := ARRIVAL_COUNT + 1;
NEW_JOB.JOB_ID := ARRIVAL_ COUNT;
——-Place new job in waiting queue.
——If system is idle, wake up service task.
if ((JOB_QUEUE.1S_EMPTY(WAITING_QUEUE))
and (not JOB_IN_SERVICE)) then
JOB_QUEUE ., PUT (NEW_JOB, WAITING_QUEUE) ;
SCHEDULER . SPAWN ;
SERVICE .WAKEUP ;
else
JOB_QUEUE . PUT(NEW_JOB, WAITING_QUEUE);
end if;
-—- Wait for time of mext_arrival.
INTER_ARRIVAL_TIME :=
TIME(A_RAND.EXPONENTIAL (LAMBDA)) ;
HOLD(INTER_ARRIVAL TIME) ;
end loop;
end ARRIVAL;
task body SERVICE is
DEPARTING_JOB JOB_PTR;
SERVICE_NOTICE: F_EVENT_LINK;
SERVICE_TIME : TIME;
package S_RAND is new RANDOM (SEED => 3);

begin
accept START; -—- Wait for simulation start.
loop —-— forever

if JOB_QUEUE.I1S_EMPTY(WAITING_QUEUE) then
SCHEDULER .WAIT;
accept WAKEUP;
end if;
- Take the first job out of waiting queue.
JOB__QUEUE. TAKE (WA1TING_QUEUE,DEPARTING_JOB) ;
SERVICE_TIME :=TIME(S_RAND.EXPONENTIAL(MU));
JOB_IN_SERVICE := true;
HOLD(SERVICE_TIME) ;
JOB_IN_SERVICE := false;
--0Observe time
ASSIGN (TIME_IN_SYSTEM, SIM_TIME -
float (DEPARTING_JOB.ARRIVAL TIME));
ASSIGN(MY_COUNT, VARIABLE(MY_COUNT) + 3.0);

in system —-record statistics.

487

end loop;
end SERVICE;

~-The main procedure initializes the
—-waiting_queue, starts the simulation tasks,
~-and then blocks itself until the simulation
~~run time has expired:

begin ——main program

—-— Initialize the waiting queue
JOB_QUEUE. INIT (WAITING_QUEUE) ;

—~~Scheduler, arrival, service blocked now;
—— start them and the simulation.

SCHEDULER . START(3) ;
ARRIVAL.START;
SERVICE.START;
HOLD(RUN_TIME) ;

—--All that is left s
——tasks and print
ABORT ARRIVAL;
ABORT SERVICE;
ABORT JOB_QUEUE.Q OPERATIONS;
ABORT MYSTATS .ASSIGNMENT ;
END_SIMULATION;

—— Print statistics
MYSTATS . PRINT_STATS;

JOB_QUEUE . PRINT_STATS ;
end EXAMPLE_SIMULATION;

stop the simulation
statistics:

APPENDIX B
EVENT ORIENTATION

with CLOCK;
generic
type NOTICE is (<»);
with procedure USER_ROUTINES (EVENT_CHOICE
in NOTICE);

use CLOCK;

package EVENT_SIMULATION is
procedure SCHEDULER (SIM_END :
—-—~SCHEDULER scans the event chain, updates
the clock, and calls event procedures.
procedure CREATE_EVENT_NOTICE (EVENT_TIME :
in float; EVENT_TYPE in NOTICE);
——CREATE_EVENT_NOTICE creates a new event
notice and files it in the event notices
queue by its scheduled time for execution.
end SIMULATION;

in float);

package body EVENT_SIMULATION is
type FUTURE_EVENT_NOTICE;
type F_EVENT LINK is access

FUTURE_EVENT_NOTICE;
type FUTURE_EVENT_NOTICE is
record
SCHED_TIME float;
NOTICE_TYPE : NOTICE;
NEXT F_EVENT_LINK;-—-next event ptr

end record;
——The record FUTURE_EVENT _NOTICE
——on the chain by schedule time.
~~The NOTICE_TYPE entry in the record names
—-~the event routine that should be called.
FIRST_F_EVENT F_EVENT_LINK := null;
——-FIRST_F_EVENT is a pointer to the head of
——the future events chain.
procedure SCHEDULER (SIM_END
begin
loop
if SIM_.TIME >= SIM_END then
exit;——terminate simulation when time ends.
elsif FIRST_F_EVENT = null then
exit; ~—or terminate simulation when no
~-more events are on events chain

is entered

in float) is

488

Patricia Friel, Sallie Sheppard

else
——Update system clock
SIM.TIME := FIRST_F_EVENT.SCHED_TIME;
~—Call the event routine indicated
~—by the event notice.
USER_ROUTINES (EVENT_CHOICE =>
FIRST_F_EVENT.NOTICE_TYPE) ;
——Remove the first event from the chain
FIRST_F_EVENT := FIRST_FE_EVENT.NEXT;
end if;
end loop;
end SCHEDULER ;
procedure CREATE_EVENT_NOTICE (EVENT_TIME :
in NOTICE)

in float; EVENT_TYPE is
NEW_NOTICE ¢ F_EVENT_LINK;
TRAILING_PTR F_EVENT_LINK;
LOOP_PTR F_EVENT_LINK;
begin

——Create a new future event notice;
NEW._NOTICE := new FUTURE_EVENT_NOTICE;
——Enter scheduled event time in the notice.
NEW_NOTICE.SCHED_TIME := SIM_TIME+EVENT_TIME H

<Rest of procedure is a procedure version
of task EVENT_CHAIN in process version>

end CREATE_EVENT_NOTICE;
end SIMULATION;

with CLOCK, QUE, EVENT_S IMULATION, RANDOM, STAT,
SPECIAL_STATS, TEXT_IO;

use CLOCK, RANDOM,TEXT_IO;
procedure EXAMPLE SIMULATION is
RUN_TIME constant := 25.0;
LAMBDA constant := 2.0;—--interarrival time
MU : constant := 1.5;-—-Service time."
SERVER,BUSY’ boolean := false;
ARRIVAL__COUNT : integer := 0;
type JOB;
type JOB_PTR is access JOB;
type JOB is
record
ARRIVAL_TIME float;
JOB_ID natural;
end record;
JOB_IN_SERVICE JOB_PTR;

package TIME_ IO is new FLOAT_IO (float);
-—An instance of the gemeric package QUEUE
——is used to represent a queue of jobs.
package JOB QUEUE is new QUE(ENTITY_REC => JOB
PTR_ENTITY => JOB_PTR);
WAITING_QUEUE : JOB_QUEUE.QUEUE;
type USER_VAR is (TIME_IN_SYSTEM,
MY_COUNT, MYSTERY_VAR);
subtype TALLY VAR is USER_VAR range
TIME_IN_SYSTEM. .MY_COUNT;
subtype ACCUM VAR is USER_VAR range
MY_COUNT . .MYSTERY_VAR ;
package MYSTATS is new SPECIAL_STATS
(USER_VAR => USER_VAR,
TALLY_VAR => TALLY_VAR,
AC VAR => ACCUM _VAR);
use MYSTATS;
——The modeler—definpd event routine types are
--passed as a parameter to EVENT_SIMULATION.
~—This allows the package to generalize to a
~~variable number apd type of event routines
——specified by the podeler.
type EVENT_FORM is (ARRIVAL,

|
|
|
1
|

SERVICE_BEGIN, SERVICE_END) ;
~—For an M/M/1 system, an arrival event,a begin
——service event, and an end service event may be
——used to model the system. These events are
—~—encapsulated in the MODEL_ROUTINES procedure.
procedure MODEL_ROUTINES (SELECT_EVENT :

in EVENT_FORM) ;
-~An instance of the generic package
——EVENT_SIMULATION controls the simulation.
package SYSTEM_SIMULATION is new
EVENT_S IMULATION
(NOTICE => EVENT_FORM,
USER_ROUTINES => MODEL_ROUTINES) ;

procedure MODEL_ROUTINES (SELECT_EVENT
in EVENT_FORM)
procedure ARRIVAL_EVENT is
NEW_JOB : JOB_PTR;
begin
——Schedule next arrival.
CREATE_EVENT_NOTICE
(EXPONENTIAL (LAMBDA) ,ARRIVAL) ;
——Create a new job.
NEW_JOB := new JOB;
~—-Set attributes of new job.

is

NEW_JOB.ARRIVAL_TIME := SIM_TIME;
ARRIVAL_COUNT := ARRIVAIL_COUNT + 1;
NEW_JOB.JOB_ID 1= ARRIVAL_COUNT;

-—1f server not busy,schedule service begin
if not SERVER_BUSY then
CREATE_EVENT_NOTICE (0.0, SERVICE_BEGIN);
end if;

~-~Place new job in waiting queue.
JOB_QUEUE.PUT (NEW_JOB, WAITING_QUEUE);

end ARRIVAL_EVENT;

procedure BEGIN_SERVICE_EVENT is
begin
~—Remove first job from the waiting queue.
JOB_QUEUE . TAKE (WAITING._QUEUE, JOB_IN_SERVICE) ;
SERVER_BUSY := true;
~—-Schedule an end of service event;
CREATE_EVENT_NOTICE
(EXPONENTIAL (MU) , SERVICE_END) ;
end BEGIN_SERVICE_EVENT;
procedure END_SERVICE_EVENT is
TIME_IN_SERVER float;
begin
SERVER_BUSY := false;
-—Collect statistics.
ASSIGN (TIME_IN_SYSTEM, SIM_TIME -
JOB_IN_SERVICE.ARRIVAL_TIME) ;
ASSIGN(MY_COUNT, VARIABLE(MY_COUNT) + 3.0);
if not(JOB_QUEUE.I&_EMPTY(“%JTING_QUEUE))then
~—Schedule a beginning of service.
CREATE_EVENT_NOTICE (0.0, SERVICE_BEGIN);
end if;
end END_SERVICE_EVENT;

begin —--MODEL_ROUTINES
case SELECT_EVENT is
when ARRIVAL => ARRIVAL_EVENT;
when SERVICE BEGIN => BEGIN_SERVICE_EVENT;
when SERVICE_END => END_SERVICE_EVENT;
end case;

end MODEL_ROUTINES ;

begin -=-Main program
-—Initialize waiting queue
JOB_QUEUE. INIT (WAITING_QUEUE);
-~Schedule first arrival to start simulation.
CREATE_EVENT_NOTICE
(EXPONENTIAL (LAMBDA) ,ARRIVAL) ;

Implications of the Ada Enviromment for Simulation Studies

——Call SCHEDULER to run simulation.
SYSTEM_SIMULATION.SCHEDULER (RUN_TIME) ;
~-Print statistics.
MYSTATS . PRINT_STATS ;
JOB_QUEUE.PRINT_STATS;
end EXAMPLE_SIMULATION;

*Packages common to both orientations are
ommi ted.

REFERENCES

i.

Kiviat, P.J., R. Villanueva, H. Markowitz, (edited
by E.C. Russell) SIMSCRIPT 1II.5 Programming
Language, CAC!, Inc., Los Angeles, 1983

Bryant, Raymond M., "Discrete System Simulation in
Ada", SIMULATION, October 1982, pp. 111-121.

Sheppard, Saltlie, Patricia Friel and Donna Reese,
"Simulation in Ada: an implementation of two world
views", Simulation in Strongly Typed Languages:
Ada, Pascal, Simula, Vol. 13 No. 2, (February
1984) pp. 3-9.

Reference Manual for the Ada Programming Language,
US Department of Defense, Ada Joint Program Office
(MIL-STD 1815A) July 1982.

Maise, Kien and Stephen D. Roberts, "Implementing
a portable FORTRAN Uniform (0,1) generator”,
SIMULATION, October 1983, pp. 135-139.

Communications Oriented Production Information and
Control System, Vol. V., IBM Corporation, New
York, 1972.

Sheppard, Sallie, Don T. Philtips and Robert E.
Young, "The Design and Impiementation of a Micro-
processor-Based Distributed Digital Simulation
System", Grant No ECS-8215550, June 1983.

Wyatt, Dana L., Sallie Sheppard and Robert E.
Young, "An Experiment in Microprocessor-Based Dis-
tributed Digital Simulation™, Proceeding of the
1983 HWinter Simulation Conference, December 1983
pp. 270-277.

Krishnamurthi, Murali and Robert E. Young, "Multi-
tasking Implementation of System Simulation: The
Emulation of an Asynchronous Paraliel Processor
Using a Single Processor", Proceedings of the 1984
Winter Simulation Conference.

489

