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Abstract

The prevention of deadlock in certain types of distributed simula—
tion systems requires special synchronization protocols. These pro-
tocols often create an excessive amount of performance-degrading
communjcation; yet a protocol with the minimum amount of com—
munication may not lead to the fastest network finishing me. We
propose a protocol that attempts to balance the network’s need for
auxiliary synchronization information with the cost of providing
that information. Using an empirical study, we demonstrate the
efficiency of this protocol. Also, we show that the synchronization
requirements at different interfaces may vary; an integral part of
our proposal assigns a protocol to an interface according to the
interface’s synchronization needs.

1. Introduction

Many physical systems that we simulate are inherently parallel;
the time required to simulate these systems can often be
significantly reduced by performing the simulation on a distributed
network. A major class of distributed architectures prohibits the
efficient implementation of a global simulation clock; each processor
maintains its own simulation clock. Careful synchronization of
processors in such a network is required to ensure the correctness of
the simulation results; further care is required to ensure that the
network does not deadlock as a result of the synchronization. A
number of deadlock—free synchronization protocols have been pro—
posed, but many of these suffer from excessive message trafic. The
SRADS[1] protocol uses comparatively fewer messages, but suffers
from time inaccuracy: an inaccurate correspondence between simu-—
lation time and the modeled real time. Using SRADS as a base, we
present a protocol that prevents deadlock, avoids time inaccuracy
and attempts to minimize the non—essential message traffic.

‘We outline an overview of this paper. Section 2 describes our model
of distributed simulation networks, and lists criteria we ask
distributed simulation systems to sausfy. We briefly sketch how
some synchronization protocols work; we observe that minimizing
communication costs need not minimize network completion time.
In section 3 we Jook at the SRADS synchronization protocol, and see
that SRADS allows time inaccuracy. Section 4 introduces the
appointment. We present the results of an empirical study indicat—
ing the appointment’s efficiency. We show that the appointment
corrects SRADS’ time inaccuracy and still prevents deadlock. Our
final section shows how an information interface may be relatively
insensitive to the values of message time-stamps. We argue that
the SRADS protocol may be used at such mterfaces while using the
appointment elsewhere.

2. Distributed Simulation Networks

We describe here our model of distributed simulation networks.
We assume that the physical system being simulated is composed of
certain communicating physical processes, or PPs. Logical
processes (LPs) are software entities isomorphic to PPs; the LPs
simulate the desired characteristics of PPs. LPs simulate the passage
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of messages between PPs by sending content messages. In order to
synchronize properly, the LPs also exchange protocol messages. A
protocol message does not model any message in the simulated phy-—
sical system. An LP’s simulation time is maintained in its own
logical clock, generally denoted by C. Each content message an LP
generates is stamped with the LP’s logical time, and 1s conceptually
written 1nto a shared facility (SF). An SF may have several
readers and writers. A content message written to an SF is physi-
cally sent to each reader of that SF. The LPs are executed on a net—
work of processors that share no memory: all communication is
message based. Each LP runs on 1ts own processor.

Given that the distributed simulation of a system is a viable option,
we may want the running simulation to satisfy the following cri-
teria.

(1! The network does not deadlock.

(2) If PP, communicates with PP, at time n then LP, sends a
content message to LP; at Jogical time n.

131 The sequence of time stamps on content messages that cross an
interface is monotonically increasing.

The first criterion is clearly desirable, for if we cannot prevent
deadlock we must detect and correct it. The second demands that a
content message’s logical time stamp accurately models the physical
ume of the simulated physical message; we will call this the time
accuracy criterion. The last criterion requires that simulation
messages crossing an interface arrive at an LP in the same order as
their corresponding physical messages arrive at a PP. We call this
the correctness criterion. The fulfillment of these criteria is
achieved through the use of synchronization protocols; when an LP
wants t0 send or process a content message, it may have 1o wait
until the system satisfies certain conditions. Several protocols have
been proposed for this purpose. We illustrate by example the gen—
eral philosophy of the Link Time[2] and Null Message[3] protocols.

Consider the queueing network shown in Figure 1, noting that that
each server and queue s simulated by its own LP.

Figure I: Distributed Simulation of a Queueing Network

LP4 may receive jobs both from LPc and an external source; it
must consequently take some care 1o enforce the correctness cri-
terion on its interface with LP-. Suppose LP,’s clock has value 10,
and a job with time stamp 15 arrives from LP-. The time of the
next externally generated job is not known. LP, may not be able
to advance its clock to 15 and service the new job, for suppose it
does. An externally generated job with time stamp 14 might later
arrive; under FCFS service this job should receive service first. Its
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logical finishing time {and time stamp on the subsequent content
message to LP¢) is less than the finishing time of the job arriving
with time 15. Yet the Jatter job’s content message is sent to LP.
first, violating the correctness criterion.

Both the Link Time and Null Message models handle this dilemma
by associating a logical time with each LP interface. This time
represents a lower bound on the time stamp of the next content
message to cross that interface. To ensure correctness, an LP may not
simulate past its minimum received bound. Each interface’s writ—
ing LP is solely responsible for updating this bound. The preven—
tion of deadlock is assured by the assumption of a minimum
difference € > O between the time stamps of consecutive content
messages across an interface. In situations similar to that depicted
by Figure 1, these lower bounds may most often be incremented
only by €. Since passing a bound requires the generation of a proto—
col message, computational and communication costs are associated
with each such increment. For small €, the majority of the
network’s messages areé protocol messages. The cost of preventing
deadlock in such a network can be quite high.

Excessive communication can lead to degraded performance, but
minimizing communication need not optimize performance. The
network in Figure 1 can illustrate this as well. Suppose that the
only bounds on message times provided by LP, to LP. are the
time stamps on content messages. Furthermore suppose that LP,’s
external source provides it with protocol messages establishing
lower bounds on future content message times. These bounds allow
LP, to calculate bounds on its own future content message times.
if LP, does not send LP- protocol messages establishing these
bounds, LP- can never process 2 job with a time stamp less than
the time of the last content message received from LP4. An arbi-
trarily large queue of messages from LPp can build up in LPe.
Some of these queued messages might be processed if LP, would
pass lower bounds to LPc. Without these bounds, maximum possi—
ble concurrency is not being exploited, leading to a likely increase
in network completion time.

The SRADS protocol prevents deadlock with limited communica~
tion; however, SRADS does not satisfy the time accuracy criterion.
Our proposed protoco] attempts to retain the message efficiency of
SRADS while satisfying the time accuracy criterion.

3. SRADS and Time Accuracy

This section describes the SRADS protocol, and shows how it allows
the violation of the time accuracy criterion. Our understanding of
this violation leads to a corrective measure.

The original SRADS protocol was given in [1). A considerable
amount of research effort has gone into optimizing and evaluating
SRADS[4-6); the use of SRADS in simulating logic networks has
been studjed on an actual distributed system{7,8]. SRADS differs
from other protocols most notablely in its use of active readers. In
other protocols, readers wait passively for messages to be sent to
them. SRADS readers decide for themselves when to look for mes~
sages. Since no lower bounds protocol messages are needed, an
SRADS distributed simulation can execute correctly with compara—
tively few protocol messages.

‘When an LP decjdes to read an SF, it first waits until all writers of
that SF have clock values at least as large as its own. This both
enforces the correctness criterion and ensures that the data used is
the most current. An SRADS writer may send a message any time
so long as buffer space is available for that message. Under these
rules, SRADS ensures freedom from deadlock using only finite com—
munication buffer space. However, it may violate the time accu—
racy criterion, as illustrated by the following example.

Consider a network including a logical process LP that generates
data for a process LP,. Part of LP,’s task is to monitor its shared
facility with LP;. Upon detecting a message from LP;, LP, accepts
the message and calculates a delay time t. We assume that the
actual value of t is a function of the data in the message that LP,
sends. Then t logical units after accepting the message from LP,,
LP, sends a message to SF,. LP, may also independently send
other messages to SF,. SF is potentially read by any other LP in

the network. In SRADS, reading LP’s determine when to examine
shared facilities for data, so we may suppose that LP, reads from
the SF; every 10 logical units. The following sequence illustrates
how SRADS allows time inaccuracy.

C,=0 TS=0

........ (%) -

C,=4 TS=02 Cr=17 TS =7
At logical time 7, LP; independently writes a message t0 SF .

SF) peerereeemf LPyJovevenns = SF,

C;=5 TS=35 C,=9 TS=6

At logical time 5 LP; writes a message to SF . At the time of the
change, LP, has simulated up to time 9.

........ >SF1 ........ 57,

C,=12 TS=5 C,=10 TS=6
LP, reads the changed value in SF, at logical time 10. It does not

block since C; > C,.
........ ot SF; beeerenns SF,
c2=11 TS=11

Cy=13 TS=5

Upon reading the change in SF at time 10, LP, calculates a delay t
of 1 logical unit. Thus LP,’s subsequent message to SF, bears a
time stamp of 11.

This example illustrates the effect of allowing LP, to read a mes—
sage with a time stamp in its past. In the physical system a transi—
tion on LPy’s input line at time 5 would have caused a transition
on its output line at ime 6. The simulation produces an inaccurate
time on LP,’s output line because LP, does not notice that transi—
tion in SF;until time 10. Even the knowledge that the transition
occurred at time 5 doesn’t help LP, the correctness criterion
requires that the ume stamp on LP,’s next message to SF, be at
least 7.

This example highlights the cause of inaccuracy. LP, is allowed to
advance its clock beyond the simulation time 5, the time at which
the transition in SF, occurred. If LP, knew that a transition in
SF ) might occur at logical time 5, it could block at time 5. Instead,
LP 5 does not block. accepts a message in its past, and sends a mes—
sage with an incorrect time stamp. Thus we see that to correct time
inaccuracy, we must prevent an LP from receiving a message in its
past. The appointment does just that.

4. The Appointment
This section introduces the appointment; we argue for the relative

efficiency of the appointment and support this argument with
empirical evidence. We show that the appointment protoco} is free
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from deadlock.

An appointment is a logical time given by a writer to a reader; the
reader agrees not to simulate past this time without the writer's
permission. Thus, the appointment ensures that no reader ever
receives a message in its past. Stated as such, the appointment
appears to be no different than the message time lower bounds dis—
cussed in the last section. However, there is a critical difference in
when this bound is established.

The models using message time lower bounds require the writing
LP to independently maintain the bounds; the interface’s reading
LP is entirely passive. In SRADS, reading LPs actively query their
shared facilities. The appointment adopts the SRADS philosophy,
and requires reading LPs to ask for their appointments. An LP
never advances its clock beyond the minimum value among all of

1ts appointments; an LP processing a received request for an
appointment returns the largest known lower bound on the time of
the next message sent across that interface. This bound might be
simply its own clock value. It is not immediately clear why the
appointment should be any more efficient than the establishment of
other models’ lower bounds. We can reason heuristically why it
might be, and then observe empirically that it is.

4.1 A Heuristic Analysis

We can compare the relative workloads of two LPs by comparing
their processors’ run time utilizations. A lightly utilized LP will
tend to advance its clock more quickly while running than a
heavily utilized LP; we say that the latter LP is the "slower” of the
two. Empirical observations{4] and analytic results/4.9] show that
the overall progress of a network 1s constrained by the progress of
the slowest LP.

Consider an interface where the writer is faster than the reader,
and the writer independently maintains the bound. Establishing a
lower bound extracts a computational cost from the writer. Fre—
quent calculation of the lower bound slows the writer down;
furthermore, the slower reader rarely waits at an appointment, the
appointment time tends to stay larger than the reader’s clock. The
writer’s extra computation contributes little towards enbancing the
slower reader’s performance. If the reader requests appointments,
the appointments and their associated computational cost occur less
frequently. The reader is delayed until it receives the new
appointment, but this delay may be offset by the writer’s computa~
tional gamns. The delay can be avoided by requesting the appoint—
ment slightly before the last appointment time is reached.

We now reverse the roles, supposing that the writer is slower than
the reader; again suppose that the writer independently maintains
the bound. The computational costs of establishing a lower bound
are even more pronounced since other LPs are often waiting for the
writer’s results. Reader established appointments can be especially
effective in this case. A reader may estimate the rate of the writer’s
progress, and refrain from requesting an appointment long enough
to allow the writer time to accomplish work before having to ser—
vice an appointment request. A reader’s carefully calculated self-
imposed blocking need not detrimentally affect overall perfor—
mance; that reader will usually wait for the writer anyway. We
see again that reader requested appointments offer performance
gains over writer maintained appointments.

The use of reader requested appointments is thus seen to strike a
balance between the network’s need for synchronization informa—
tion and the cost of providing it. The balance is achieved by pro—
viding that information only when needed; we have argued intui-
tively that this balance leads to better network performance.
Simulation studies arrived at the same conclusion.

4.2 Empirical Results

To evaluate the appointment method, we simulated its use on a
number of small (3 to 5 LP) networks. Two LPs in each network
share at most one shared facility: each shared facility has exactly
one reader and one writer. The physical time elapsed between an
LP’s data communications is randomly distributed: both positive-
normal and exponential distributions are used. We varied a single
parameter through each network; this parameter represented writ—

ers’ abiliues to calculate lower bounds on their future message
times.

The writers’ predicuon ability was modeled by associating a logical
write interval length and a (0,1] rea] number with each SF an LP
writes to. The write interval length is the mean logical time
berween actual writes that LP performs: the write interval length
is constant across all experiments. The (0,1] real is muluplied with
the write interval length to produce a shorter interval length,
called an appointment interval. An LP’s logical time line is par—
titioned into appointment intervals. At the end of an appointment
interval, the writing LP randomly decides whether or not to per—
form a write to the associated SF. The appointment interval length
1s thus seen to bound a writer's ability to predict the time of its
future writes. The write decision is constructed so that the (0.1]
real is the probability that the write occurs: for this reason the real
is called the write probability. The number of logical units
between writes is thus seen to be a geometrically distributed ran—
dom variable with a mean equal to the write interval length. We
vary writers’ prediction ability by varying the write probability.

We evaluated the appointment protocol by simulating otherwise
identical networks with two different methods: the reader active
and writer active methods. Using the writer active method, an LP
dispatches an appointment as soon as i1t reaches the end of an
appointment interval. An LP using the reader acuve method main—
tains a list of appointment times obtained from its writers. When
1ts clock reaches the mimimum value on this list, the LP requests an
appointment from the associated writer. An LP processing a request
for an appointment can see no farther into 1ts future than the end
of its current appointment interval. That endpoint is returned as
the appointment tume. Every time an LP calculates an appointment
message, a computational cost equal to five percent of the mean
(real) running time between writes 1s exacted from 1t. We assume
that the communication delay for the appointment 1s equal to the
computational delay.

To evaluate the effectiveness of reader requested appointments, we
compared the simulated performance of several networks using the
reader active method with the simulated performance of those same
networks using the writer active method. The resulting network
completion times are scaled in Figure 2 by the completion times of
these networks running with perfect future knowledge. A network
using the writer active method with write probabilities equal to 1

vields optimal performance for this model; to say that a network
has 50% relative performance is to say that it is twice as slow as
that same network running with perfect future knowledge. The
graph given in Figure 2 is a composite taken from the networks we
tested. It shows the general trend of network performance as we
vary the write probability.

1
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................. vaee .3
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Figure 2: Relative Per formance vs. Write Probability

These results clearly indicate that the reader active method is less
sensitive to a decreasing write probability than is the writer active
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method. Furthermore, except for near perfect future knowledge, the
reader active method performs better. These results vindicate a use
of reader requested appointments.

4.3 The Appointment’s Freedom from Deadlock

The synchronization behavior of any network using appointments
can be simulated by a network using the Link Time model; this
model has been shown to be free from deadlock. The only
difference lies in how often the critical lower hounds are calculated:
the mechanics of establishing appointments does not affect the free—
dom from deadlock.

5. Problem Oriented Protocol Design

‘We show in this section that an LP can be relatively insensitive to
incoming content message time—stamps at some interfaces. It is
possible to use the SRADS protocol at such interfaces and still
preserve time accuracy on the LP’s output messages. We extend this
observation te show how we can use a mixture of SRADS and
appointment protocols and still ensure the time accuracy of the
network.

5.1 Time Insensitivity

‘We have shown how SRADS allows an LP to read a message in its
logical past, and consequently post a message with an incorrect time
stamp; the LP is sensitive to its received message tumes. We can
conceive of an example where this is not the case.

Consider an SRADS network where LP, models a logical circuit
that at unpredictable intervals toggles an output line read by LP;.
LPr also simulates some logical circuit, but allows itself to be
affected by LP,’s output only on the rising edge of some internally
generated clock. Assume that the clock has a period of 10 logical
p—secs. The simulation time of LP.’s output is important to LPp
only with a granularity of 10 u~secs; this is where the SRADS pro-
tocol is useful. When LPy looks for a transition to clock 1n at time
100. it will recognize the last transition caused by LP. in the logi—
cal interval (90,100): LP; 1s otherwise insensitive to the time of the
message. Any content messages that LPp sends can still have the
correct Lsme stamp; thus in special cases we can use the SRADS pro-
tocol and still ensure time accuracy.

5.2 Tailoring the Protocol to the Interface

The last example showed that an LP may be able to use SRADS at
an interface and still maintain the time accuracy of its outgoing
content messages. We argue that using SRADS at such an interface
can yield better performance. We consider the problems faced by
two LPs which can use SRADS at some interfaces but must use
appointments at others.

A reader using either the appointment or other discussed protocols
at some interface must wait at times established by a writer. If the
reader 1s relatively insensitive at that interface to the times of con—
tent messages, it is unreasonable to constrain it from advancing past
these times; the reader can determine for 1tself when it needs to
synchronize with its writers. The use of SRADS art such an inter—
face can be more efficient. A single SRADS read accomplishes the
needed synchronization; other protocols can require many protocol
messages to service the same synchronization need.

Having observed that some interfaces can and should use the
SRADS protocol, we consider the problem of mixing SRADS and
appointment protocols within a network. We first assume that log-
ical processes and ensuing shared facilities have already been
identified. An LP needs to be examined for time sensitivity in each
of its input shared facilities. We suppose that some LP's are found

to be relatively insensitive to certain of their input shared

facilities. Appropriate logical times for that LP 1o perform SRADS
reads on those shared facilities can be calculated. Remembering that
& shared facility may have several readers and writers, and that
two LPs may share more than one shared facility, we consider the
following two questions:

(1) Can two different readers of the same SF use different proto-
cols to read that SF?

(2) Can we use different protocols among all the SFs two LPs may
communicate across?

The answer to the first question is yes; a shared facility read by n
readers is equivalent to n single reader shared facilities receiving
the same messages. The common readers of a shared facility in no
way affect each other at that interface.

The answer to the second question is also yes. Suppose that LP; and
LP, communicate through a number of SFs such that LP, requires
appointments from LP, at some SFs but can use SRADS at others.
So long as LP, does not advance beyond appointment times without
LP,'s permission, the use of SRADS at other interfaces does not
interfere with the appointments. Furthermore, using both SRADS
and appointments between two LPs can lead to further efficiencies.

LP, services LP»'s SRADS read requests by simply returning the
value of its logical cloch. To process an appointment request. LP
must, at the very least. examine its clock. It follows that processing
an SRADS read is no more costly tc LP,; than processing an
appointment request. The clock value LP, observes in an SRADS
read can always be used as an appointment, possibly replacing an
older appointment time established in the conventional way. How-
ever, the read is cheaper than the appointment. Consequently.
using both SRADS and appointments between two LPs 1s more
efficient than using only appointments.

6. Conclusions

Distributed simulation on certain types of networks requires special
synchronization protocols; the correctness and time accuracy of the
simulation must be ensured as well as the deadlock freedom of the
network. Such protocols have traditionally required the recipients
of messages to passively await them. This approach easily leads to
an undesirably high level of overhead for message writers. The
SRADS protocol can avoid much of this overhead by employing
active readers; SRADS however can lead to time inaccuracy. We
have proposed the appointment, a protocol based on SRADS that
ensures time accuracy. This protocol balances the network’s need
for synchronization information with the cost of pioviding that
information. An empirical study of the appointment shows it to be
more efficient than established approaches. The appointment and
SRADS may be mixed within a network; an interface uses SRADS
or the appointment according to its time accuracy sensitivity. We
observe that this mixture can lead to further performance gains.
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