Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

Yo7

ASYRCHRONOUS SIMULATION OF SOME DISCRETE TIME MODELS

Jay B. Ghosh
Decision Sciences, University of Dayton
Dayton, OH 45469

ABSTRACT

Traditionally, simulations are carxried out in a syn-
chronous manner in that most simulators advance their
clocks from the time of one event to that of the most
imminent event in order to execute the simulations.
This synchronization is achieved at the expense of
maintaining a data-structure called the event-list.

An alternative to this situation is asynchronous sim—
ulation. Asynchronous simulators do not always pro-
cess events in their natural order of occurence. The
event-list and the associated costs may thus be elimi-
nated, While asynchronous simulation has found con~
siderable exposure in the literature of distributed
processing, little attention has been paid to assess
its applicability in the conventional environments.
Some research in the past have considered simulating
without the event-list. But such research have inevi-
tably lacked generality. This paper intends to broaden
the scope of asynchronous simulation in the conven-
tional environment. It does so by presenting asynchro-
nous solutions to a set of disparate problems and by
hoping that the commonality underlying these solutions
shall be captured and eventually lead to a general
framework for simulation.

INTRODUCTION

The word "'asynchronous" in the context of discrete
event simulation has dual comnotations. Some (viz.,
Bratley et. al. [1], p. 16-17) prefer it to mean vari-
able time-increment procedures as opposed to ''synchro-
nous" or fixed time-increment procedures for simula-~
tion control. Others (viz., Chandy and Misra [2])
maintain that "asynchronicity" comes about when within
phases of execution of a simulation parts of the simu-
lator are allowed to be far ahead of others in simu-
lated time. It should be evident that according to
this posture both procedures of conventional simula-
tion are inherently "synchronous". This paper will
subscribe to the latter view in its use of the words
"synchronous' and "asynchronous', and from this point
on, will abandon the quotes surrounding them.

BACKGROUND

There are three prevalent world views for comventional
discrete event simulation. They differ from each
other on the basis of their individual orientations:
activity, event, and process (Kiviat [5].) Though
these different orientations warrant differences in
implementation, synchronicity remains essestial to all
of them. This is normally achieved through the main-
tenance of a clock and a list of pending events. The
cost associated with processing of the list is often
prohibitive. Over the years, a number of data-struc-
tures have been advocated for this list (McCormack and
Sargent [6]), but the debate about their optimality
still continues. Of interest is a recent paper by

Comfort [3].

Early departures from synchronous simulation and the
list of events can be found in Hordijk et. al. [4] and
Norton [8]. WNorton provides simulation solutions to a
class of problems in the asynchronous sense, Nance
[7] puts the issue of such solutions in perspective,
calling them state-sequenced simulations. M¥ore re-
cently, Bratley et. al. [l] suggests (p. 263-264) in
passing that it may be profitable to simulate using
local clocks and local list of events in those parts
within the structure of a simulated system where the
processes do not interfere with each other. To some
extent this paper reflects similar thoughts.

In contrast to conventional simulation, the idea of
asynchronicity comes gquite naturally to distributed
simulation. A good amount of work on asynchronous
simulation is reported in its literature, notably that
by Chandy and Misra [2].

CONCEPTS AND ISSUES

This paper does not present a unified methodology for
asynchronous simulation. It considers, on the other
hand, a number of disparate problems and shows how
these problems can be solved in an asynchronous manner.
There is a typical theme to all the solutions in that
every simulated system is conceived as a network of
blocks through which entities, generated internal or
external to the system, may traverse over time.

Asynchronous simulation does not require an event—
list. A global clock is not necessary either. Nor-
mally, clocks are assigned to the various blocks and
are maintained locally. Entities are also allowed to
carry their own clocks.

This does not imply, however, that an entire simula-
tion can be carried out asynchronously. The degree to
which asynchronicity can be effected depends on the
attributes of the system under study and the objective
of the simulation experiment. The system attributes
are the structure of the system, the protocals govern-
ing the dynamics of the system, and the level to which
resources are shared across various processes compris-—
ing the system. In particular, pure serialism would
hardly warrant any synchronization whereas any paral-
lelism would inevitably demand it. Resource sharing,
pre~-emptive entities, and some queue disciplines would
also force asynchronous processing to degenerate con-
siderably. Objectives of a simulation experiment con-
cern statistics collection and simulation run control.
These tasks assume nontrivial proportions in asynchro-
nous simulation.

In the next section a number of simulations are han-
dled asynchronously. The examples have been chosen to
highlight the attractiveness of the asynchronous ap-
proach as well as its limitations. Most of the major

468

dJay B. Gosh

issues mentioned above are addressed.

SOME EXAMPLES

Norton [8] introduced the concept of entity-based pro-
cessing which, in her case, relied on the state~space
representation of systems. This paper resorts to a
similar approach, but is far less formal and much more
intuitive. Emphasis is placed on resolving situations
where an approach like Norton's would either become
too complicated or simply fall. The examples follow.

Single-server Queues

A single-server queue (fig. 1) is considered. Queue
discipline of first-in-first-out (FIFO) is assumed.
This system has the nice property that preserves the

[>— 10—

FQT 2.

order in which entities enter the system even as they
exit. It is thus possible to simulate the system from
one entity to the next. The departure time for an en~
tity is simply the maximum of its arrival time and the
departure time of the preceeding entity plus its ser—
vice time. Going back to fig. 1 it may be instructive
to think of the arrival time as the local clock time

at the source and the departure time as the local clock
time at the queue.

Single-server Queues in Tandem

The same approach can be extended to a tandem of sin-
gle~server queues (fig. 2). Here an entity arriving

Flg. 2
at a queue simply checks its own clock with that of the
queue. Its departure time is computed like before to
reflect whether it has to wait or not.

Multiple-server Queues

The situations considered above have been purely ser-
ial. A multiple-server queue (fig. 3) brings in paral-
lelism. Entity-based processing collapses as that much

i Y

!
]
Lo
Fig. 3.

desired ordering of entities according to their arrival
times is no longer maintained. Synchronization becomes
necessary immediately following service. This can be
done by using the following steps.
i. Keep an ordered list of service completion times.
ii. Check arrival time of entity with the minimum of
service completion times. If arrival time is
greater than or equal to the minimum time, then
the entity does not have to wait. Otherwise it
does. Compute the corresponding service comple-
tion time and post in the list.
iii. TIdentify the entity with the minimum service

completion time and release it for further processing.

iv. Note that if there are m servers, the first en~
tity will be released only after m service com-
pletion times have been computed.

Queues with Feedback

Feedback like parallelism hampers the performance of

entity~based processing. Synchronization is required
as entities with different times contend to enter the
same queue (fig. 4). This can be ensured if the fol-~

[>—>_]

F)‘g. 4,

lowing is dome.
i. Process an entity all the way along the feedback
loop to the queue.
ii. Hold it there until all entities arriving from
the source are processed.

Combination of Queues

Combination of single-server and multi-server queues
(fig. 5) require occasional synchronization. Entities

Fug. S

are processed until they cannot progress any further
i.e., they either reach a sink or are "blocked”. MNo-
tice that the "blocking' mentioned here is caused by a
time condition rather than a state condition. A
“blocked” entity is unblocked at a later time by some
other entity arriving at the point of the "block".

Non-FIFO Queue Disciplines

Non-FIFO queue disciplines like LIFO (last-in-first-—
out) and SIRO (service—in-random-order) destroy the
arrival order of entities. Synchronization is thus
called for. A scheme for LIFO queues is given below.
i. "Block" any entity that has to wait at the queue.
ii. If an entity does not have to wait, check the
LIFO queue. If queue is empty proceed with cur-
rent entity. If not, "block® it and '"unblock"
all entities that can enter service before it.
SIRO works very much the same way except that the ar-
riving entity gets "blocked" and an entity is randomly
picked from the queue and released for further proces—
sing.

Resource Sharing

Resources are global variables that may couple two or
more processes. Asynchronous processing without re-
gard to appropriate value of these variables may im-
pair the integrity of a simulation. One solution is
to tag each resource with a time or a list of times.
On other occasions, it may be necessary to bring about
synchronization between processes sharing the same re~
source.

469

Asynchronous Simulation of Scme Discrete Time Models

Statistics Collection

Statistics collection on observation-based variables
(e.g., time in queue) is straight forward in asynchro-
nous simulations, WNot so with time-based variables
(e.g., number in queue). The problem can be handled
by keeping past information at each process. On ar-
rival of an entity at a process these information can
be scanned to develop the necessary statistics. The
same information can also be used if state-conditioned
processing is required. The above solution holds for
local collection of statistics. Global collection
(e.g., number in system) of statistics may need some
synchronization as well.

Terminating a Simulation

Simulations are normally stopped after a specified num-—
ber of entities have been processed or a specified time
has been reached. Terminating an asynchronous simula-
tion based on time needs synchronizations both at the
source and the sink ends of the simulated system.
Termination criteria other than number of entities and
time may also require some synchronization so that sta-
tistics are collected properly.

CONCLUSIONS

As demonstrated in the examples above, asynchronous
solutions can be found for a wide variety of problems.
But the strategies employed so far have been specific
to problems. For the asynchronous methodology to be a
viable alternative to its synchronous counter—part this
problem-dependence must be removed. Experience sug-
gests that this may not be very difficult to achieve at
least for systems without complex interactions. Adapt-
ing asynchronous methods to general problem solving re-
mains the task for future research.

ACKNOWLEDGEMENTS

The research leading to this paper was partially sup-
ported by a small grant from the School of Business
Administration at the University of Dayton.
REFERENCES

1. Bratley, P., Fox, B. L., and Schrage, L. E.,

A Guide to Simulation, First edition, Springer-
Verlag, New York, 1983,

2. Chandy, K. M. and Misra, J., "Asynchronous distri-
buted simulation via a sequence of parallel compu-
tations", Comm. ACM, Vol. 24, Iss. 4, 198-206,
April, 1981.

3. Comfort, J. C., "The simulation of a Master-Slave
event set processor', Simulation, Vol. 42, Iss. 3,
117-124, HMarch, 1984,

4, Hordijk, A., Iglehart, D. L., and Shassberger, R.,
"Discrete time methods for simulating continuous
time Markov chains", Rept. No. 35, Dept. of Opera-
tions Research, Stanford Univ., Stanford, Califor-
nia, 1975.

5. Kiviat, P. J., "Digital Computer Simulation:
Computer Programming Languages', Memo. WNo. RM-5883

-PR, Rand Corporation, Santa Monica, California,
1969.

6.

McCormack, W. M. and Sargent, R,, "Analysis of
future event set algorithms for discrete event
simulation", Comm. ACM, Vol. 24, Iss. 12, 801-812,
December, 1981.

Nance, R. E., "The time and state relationships in
simulation modeling", Comm. ACM, Vol. 24, Iss. 4,
173-179, April, 1981.

Morton, S. R., "Schedule independent simulation:
a new technique of discrete event simulation suit-
able for small computers", Proc. Winter Simula-

tion Conference, vol., 2, 499-508, 1976.

