Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

463

A LANGUAGE-DIRECTED DISTRIBUTED DISCRETE SIMULATION SYSTEM

An Extended Abstract

Dana L. Wyatt
Dept. of Computer Science
Texas Christian University
Ft. Worth, TX 76129

1. INTRODUCTION

In recent years, there has been a noticable increase
of interest into the feasibility and utility of
distributed discrete simulation. This has been
prompted by an improvement in distributed algorithms
and distributed computer systems, as well as the need
to economically manage the increasingly complex
simulation models found in today's world,

Researchers have centered their efforts around two
distinctly different approaches to the design and
implementation of distributed discrete simulation
systems, with the differences based on what types of
tasks are distributed to the individual processors.
The more common approach researchers have taken is to
develop a system in which the model functions (events)
are distributed among the processors (1,3,7,8). The
alternative approach distributes simulation support
functions (e.g. random number generation) to the
available processors (4,9).

A basic philosophical difference separates the two
approaches. In the distributed discrete simulation
via model function (DDS/MF) systems, designers have
chosen to deal with the complex issues of deadlock
detection and avoidance and resource management in
situations where the event set is larger than the
number of processors available in order to maximize
the potential parallelism of the model. However, they
generally increase speed while sacrificing ease of
programming. In the distributed discrete simulation
via support function (DDS/SF) systems, designers have
chosen to approach the issue from an ease of
programming standpoint. They have sacrificed fully
utilizing the inherent parallelism of simulation
applications in favor of adopting an approach where
the architecture of the system is "transparent" to the
user.

Sallie Sheppard
Dept. of Computer Science
Texas A8M University
College Station, TX 77843

2. A LANGUAGE-DIRECTED DDS/SF SYSTEM

A research project currently being completed at Texas
A&M University involves the development of a
multitasked implementation of a microprocessor-based
distributed discrete simulation system in which the
simulation support functions would be distributed to
the avajlable processors. Two prototypes were
constructed based on different existing simulation
languages: SIMPAS and GASP IV. The information
presented here concerns the prototype based on SIMPAS.
The GASP IV prototype is discussed in a paper by
Krishnamurthi and Young, also found in these
proceedings.

The objectives of the SIMPAS phase of this project
were (1) to develop a transiator to produce a
distributed Pascal program from a sequential SIMPAS
program, (2) to examine the communication activities
which occur between the various components of the
DDS/SF architecture in order to determine if the
hierarchical design constructed was efficient, and (3)
to determine the feasibility and utility of this type
of simulation.

2.1 The SIMPAS Language

SIMPAS is a strongly typed, event-oriented, discrete
simulation language based on Pascal (2). The
extensions to Pascal which SIMPAS incorporates for
managing events are similar to those of SIMSCRIPT.
Statements such as SCHEDULE, CANCEL, DESTROY, and
RESCHEDULE are used for manipulating event notices on
the event Jist; INSERT and REMOVE statements are used
for manipulating entities in queues; and event
routines are simply Pascal procedures with the keyword
"EVENTY replacing “PROCEDURE".

SUPERVISOR,
ERROR HANDLER &
GLOBAL DATA

|

EVENT RANDOM
ROUTINES FILING NUMBER STATISTICS
AND SYSTEM GENERATION COLLECTION
DATA 1/0
Figure 1: A SIMPAS-based Distributed Discrete Simulation System

This research was supported in part by the National
Science Foundation under Grant No. ECS-8215550.



4oh

The language translator is implemented as a
preprocessor which accepts as input a SIMPAS program
and produces as output a Pascal program. This Pascal
program must then be compiled on the target computer
using that system's Pascal compiler. It is this
feature, coupled with it's structured facilities,
which led to the selection of SIMPAS as the base
tanguage for the DDS/SF system.

2.2 The DDS/SF System Design

The hardware selected for the implementation of this
project was a Texas Instruments 990/12 minicomputer
running the DX10 operating system. The Tl 990/12 is a
16-bit minicomputer which supports multitasking
applications with ease. The system allows up to 8 6AK
byte tasks to be running simultaneousty, with
communication between tasks accomplished either via
messages or a common data area associated with
multiple tasks.

An initial analysis of the SIMPAS language yielded
three basic types of support functions it provides:
random number generation, statistics collection, and
event and queue majntanence., Based on this, the
system was designed with the hierarchical architecture
shown in Figure 1. A supervisor module was added to
maintain control -over the sub-modules and to handle
any errors which might occur.

2.3 Implementation Constraints

Due to the method in which the T! 990/12 handles tasks
and data access, some modifications were made to the
SIMPAS language. Most noticable of these is the
method in which space is allocated for temporary
entities. SIMPAS traditionally makes use of the
dynamic storage allocation facilities of Pascal when
creating new event notices and entities, however, the
T1 990/12 uses a relative addressing scheme for
mapping a pointer to the actual data area it
references. The pointer is treated as an offset from
heap storage allocated to a task, and since each task
is allocated it's own heap, pointers in one task are
not valid in another. Therefore, the multitasked
implementation of SIMPAS uses arrays for it's event
notices and entities, similar to that of GASP IV.

2.4 Monitoring Communications Between Modules

One of the objectives of this research project was to
analyze the communication activities which occurred
between the various modules in the system. This would
show some indication of the size and volume of message
traffic which would be found on the communication
lines between the processors which would hold these
tasks. Since each message is of a prescribed format,
only the number and type of messages is recorded.

This communication monitor was implemented not as an
independent module, but included in the invocation of
each message and is thus distributed throughout the
programs.

As of this writing, three sample programs have been
tested and communication measurements collected. They
include a simple M/M/1 queueing system, the
traditional harbor simulation problem, and an
inventory simulation problem. 4As expected, initial
analysis indicates a very heavy traffic flow between
events and filing routines, moderate flow between
events and statistics and filing and statistics, and a
tighter flow between events and random number
routines. However, a further analysis of messages
which require an immediate reply and postpone

Dana L. Wyatt, Sallie Sheppard

execution of the sender until such a reply is recejved
(e.g. request for information from a queue) is
expected to yield a method of placing priorities on
message communications.

3. CURRENT STATUS

This project is currently in it's final phase of
testing, lacking only the implementation of several
more varieties of simulation applications in order to
provide a larger base of communication measurements
from which to draw conclusions concerning the
functional breakdown of the DDS/SF system presented
here. The implementation and execution of this
prototype system based on SIMPAS does illustrate that
the DDS/SF approach to distributed discrete simulation
is a viable alternative to traditional sequential
simulation. |t provides the user with the ease of
programming in a language that is familiar to him
while still allowing some of the advantages of
parailel processing to be gained. The user has no
need to concern himself with the actual organization
of the distributed system. In this manner, not only
would the system gain the speed-up of executing the
events in parallel, but would also gain some speed-up
by allowing the time needed for support functions to
be reduced.

REFERENCES

1, Bryant, R.E., "Simulation on a Distributed
System," 1979 Distributed Computing Systems
Conf., pp. 544-552.

2. Bryant, R.M., SIMPAS Users Manual, Dept. of
Computer Science and Academic Computing
Center, University of Wisconsin - Madison,
Madison, WI, 1981.

3. Chandy, K.M. and Misra, J., "Asynchronous
Distributed Simulation Via a Sequence of
Paraliel Computations," Comm. ACM, 24, 4,
pp. 198-206, 1981.

4, Comfort, J.C., "The Design of a Multi-
Microprocessor Based Simulation Computer-I,"
Proc. of 15th Annual Simulation Symp.,
pp. 45-53, 1982.

5. Enslow, P.H., "Multiprocessor Organization - A
Survey," Computing Surveys, 9, 1,
pp. 103-129, 1977.

6. Notkin, D.S., "An Experience with Parallelism in
Ada," SIGPLAN Notices, 15, 11, pp. 9-15,
1980.

7. Peacock, J.K., Wong, J.W. and Manning, E.G.,
"Distributed Simulation Using a Network of
Processors,” Computer Networks, 3, 1,
pp. 44-56, 1979.

8. Reynolds, P.F., "Active Logical Processes and
Distributed Simulation: An Analysis,"
Proc. 1983 Winter Simulation Conf., Vol. 1,
pp. 263-264.

9. MWyatt, D.L. , Sheppard, S. and Young, R.E., "An
Experiment in Microprocessor-Based
Distributed Digital Simulation," Proc. 1983
Winter Simulation Conf., Vol. 1, pp. 271-277.




