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ABSTRACT

The design of a physical distribution system requires
decisions on the number, sizes and locations of ware-
houses. Tor each warehouse, one must also address the
related issues of which products should be stocked
there and which customers it should serve. This paper
reviews and critiques the two major approaches for
physical distribution planning, namely simulation
models and optimization models. These are discussed
in light of the various management activities in
physical distribution planning and operatioms.
Strengths and weaknesses of the two model types are
summarized, and ways suggested in which they may be
usefully employed together.

I INTRODUCTION

This paper has 6 major sections following this brief
introduction. Sections II and III respectively treat
simulation models in physical distribution (PD) and
optimization models in PD. Significant PD applications
of each model type will be summarized.

Section IV discusses the physical distribution func-
tion. What are the major management activities here
(transportation, warehousing, inventory control, ...)
and how might the various strategic and operational
decisions in PD be assisted by a simulation model? By
an optimization model?

In Section V, we treat the issues of data required by
the optimization or simulation models, and the infor-—
mation needed by PD managers to successfully carry out
the activities discussed in Section IV. The degree of
overlap or commonality of the various information re-
quirements will be of particular interest.

Section VI deals with "hybrid" simulation/optimization
models, or more generally, with combined simulation/
analytic models. Such approaches have been success-—
fully employed in PD as well as other operations
research (OR) studies. Section VII presents our con-
clusions.

IT SIMULATION MODELS IN PHYSICAL DISTRIBUTION

The technique of simulation permits detailed tracking
of the material flows in a logistics system. Before
designing and coding a model of the distribution of
goods from factories to warehouses to retailers, how-
ever, a number of management policies must be speci-
fied. Some of these policies will involve highly
strategic issues: which products should be stocked at
every warehouse and which should be carried only at
certain warehouses; should the flow of goods be
governed by a "pull" system (when a warehouse deter-—
mines that it requires more of a product, it places an
order with the factory) or by a "push" system (a
decision to re-stock is made by the factory, which then

pushes the product out to the warehouse), or perhaps
by a mixture of the two systems, etc.

These management policies will also involve some
operational issues such as the following. Suppose
warehouse 1 (Wl) currently has on hand 50 cases of

Should
W hold up ("backlog'") the entire order until it re-
If so, should W

request that this shipment be expedited from the
factory, or perhaps even from outside the normal

channels, say from another warehouse WZ? Alternatively,

the 50 units could be shipped now. If so, should an
additional 10 units be shipped when available, or
should this remainder be included in the "next" order
from R4? (Perhaps this order will be transmitted to

product A while retailer R4 requires 60 cases.

ceives an additional replenishment? 1

wl one period earlier than if the full 60 units had

been available.)

There are also related issues which straddle the stra-
tegic and operational. One such example is whether
the preceding decision pertains to only certain pro-
ducts A, C, F, ... or to all products stocked at wl.

In short, there is a large number of management
policies which must be specified. (For some insight
into how detailed the specification must be, see [4]
where this is accomplished via a "questionnaire".) It
is the purpose of this paper to understand the perfor-
mance of simulation models for physical distribution
relative to their optimization counterparts, and to
that end, we next review several "famous" PD simulation
models.

The Heinz Simulation. A physical distribution simul-
ation of historical significance is that of the H.J.
Heinz Co. [22]. This dealt (at the time) with 9 plants,
3 mixing points (regional distribution centers) and 43
warehouses, incorporating 50 different product-consump-
tion patterns for customers. The original model was
essentially "static" in nature, allowing no feedback
later in the simulated year of the earlier stages' re-
sults. Model validation was carried out by replicating
the firm's current distribution costs to within several
per cent. The model studied im detail 10 alternative
distribution configurations in addition to the present
one. The final recommendations were to leave unchanged
the 9 factories and 3 mixing points, while reducing the
43 warehouses to 32, some of which had new locations.

This use of simulation in PD was noteworthy for several
reasons, not the least of which was the model's im-
plementation on the equivalent of today's microcomputer.
The Heinz simulation by Shycon was the first of many
distribution studies performed by him and his firm.

The methodology which evolved was incorporated in a
model termed LOGISTEK. As described by Vollmann ([25],
pp.395-397), the model now has some "adaptive" features
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which permit approximate optimization. A set of per-—
haps 100 candidate warehouses can be narrowed down to
30 or so in about 35 or 40 computer runs, most of which
involve a detailed study of location patterns and the
tradeoff of cost and customer service. These resulting
warehouses could similarly be assigned back to fact-—
ories, allowing the user to look at product flows in
an adaptive way.

These adaptive features permit the model to drive in-—
efficient locations out of the solution. (In this re-
gard, LOGISTEK is somewhat similar to mathematical
programming, which of course outputs the optimal ware-
house locations.) Inefficiences are noted after each
"iteration" by allocating the fixed costs of serving
customers from each warehouse. Suppose the total
volume handled at a particular warehouse is small. Its
total cost per unit shipped will likely be high, even
if that warehouse is very close to some customers. In
this way, .certain warehouses will ultimately be closed
while others will now have a higher throughput, thereby
lowering the latter's total cost/unit.

In summary, while the original Heinz simulation
assigned customers to warehouses based on closest dis-
tances, the later version of the model treated this

and other aspects more carefully. At least 15 years
after the original Shycon study, Heinz was still
employing simulation to assist in physiecal distribution
decisions [6].

Other Simulation Models. Other well-known models for
PD simulation are described by Bowersox [3]. These in—
clude the static simulator DPM (Distribution Planming
Model) and the dynamic simulators DSS (Distribution
System Simulator) [4] and LREPS (Long~Range Environ—
mental Planning Simulator). Both DSS and LREPS may, at
the option of the user, be run as probabilistic rather
than deterministic models. In prineiple, this
stochastic feature is an advantage of simulation over
optimization. Nevertheless, the use of a probabilistic
model also requires a good statistical analysis of
simulation output [14]. Since statements about model
results will now be phrased in terms of confidence
intervals rather than point estimates, a stochastic PD
simulation is viable only when there is a "small"
number of random variables. At least in the case of
DSS, most of the probabilistic features would therefore
not be used for a given rum.

In any case, the Heinz model plus the three mentioned
in the preceding paragraph are very realistic, success=-
ful simulations of multi-echelon physical distribution
systems. In Section VII we will critique the use of
simulation for distribution system design, after we
have discussed the PD fumction (Section IV) and data
requirements (Section V) for PD management and model-—
ling. We turn now in Section III to optimization
models in physical distribution.

III OPTIMIZATION MODELS IN PHYSICAL DISTRIBUTION

It is worth mentioning at the start of this section
that we are referring to optimization models for the
planning of PD. Thus, although optimization techniques
have been highly successful in the routing and
scheduling of delivery vehicles, or in determining good
inventory policies, these applications are excluded
from consideration at the moment. (We will return to
such operational questions in Section IV on the PD
function and in our conclusions, Section VIIL.)

Rather, we are concerned here with optimization models
for the design of a distribution system: How many

warehouses should there be, of what size and location,
and what are the appropriate product £lows? The latter
question asks, "what are the optimal assignments of
factories to warehouses and of warehouses to
retailers," and which products should be stocked at a
given warehouse?"

Geoffrion and Graves [9] have formulated and solved
this mixed integer programming (MIP) problem with a
great deal of success [10-12]. The objective is mini-
mization of total costs, including those of pipeline
inventories, transportation, the fixed and variable
costs of warehousing, and possible penalty costs if a
warehouse is operated at a throughput level outside
the desirable range. Example of the constraints
include: factory supply limitations for each product
group; retailer demand rvequirements by product; the
assignment of each retailer to a single warehouse for
each product group; plus a great many configuration
constraints involving O-1 variables.

The size of this problem is very large. For the
application at Hunt-Wesson described in [7,9], there
were 17 product groups, 14 factories, 45 possible sites
for warehouses and 121 retailers. This resulted in a
model with approximately 23,000 continuous decision
variables, 700 0-1 variables, and 11,000 constraints.
Nevertheless, in very moderate computer time, the

model is solved to near optimality.

Moreover, with careful use of the modelling flexibility
offered by the 0-1 variables, this MIP problem allows
the same realistic restrictions on system configuration
which are met in practice. (These restrictions can of
course be handled in simulation, since one generally
pre-specifies the PD systems to be simulated.) Common
illustrations are minimum and maximum throughput
volumes for each warehouse; limiting at most two of

the three warehouses Wl’ W4 and W6 to be open, etc.

Many more examples of system restrictions, and the ease
with which a skillful modeller may take care of them in
MIP, are presented in [11].

Whether one employs a simulation model or an opti-
mization model, the initial run or model solution is
less important than are answers to "what if" questions
(as a simulation practitioner might say) or the results
of "related secondary runs" (see [12]). An opti-
mization practitioner would generally call the latter
"sensitivity analysis", at least in the case of linear
programming, where this is performed with the help of
duality. That the work of Geoffrion and Graves [8,11]
permits these secondary rums to be carried out with
such ease is remarkable: there are no MIP "shadow
prices" to assist in this task.

Geoffrion has argued [7,8] that the technique of
simulation is inferior to his choice of optimization
for distribution system design. Optimization was said
to be the only approach which enables one to distinguish
between two alternatives whose differences in total
costs are small; to easily perform related secondary
runs of the model [12]; and to know that because one
has the optimal solution, the model's clients may be
more readily convinced of the validity of the results.

There is much merit in Geoffrion's comments and of
course in his work itself. It should be pointed out,
however, that the use of such a large scale opti-
mization model is dependent upon an organization's
prior familiarity and expertise in mathematical pro-—
gramming, and may require considerable support from the
firm's data processing personnel.
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Intelligent use of mathematical programming will
generally involve 7 steps (some of which will of course
be repeated in feedback fashion):

model formulation

data preparation and checking

. data entry

initial model runs

"secondary" runs

. interpretation of model results
. recommendations.

N U W N

OR personnel are generally quite good at the latter two
stages, so 6 and 7 will not be considered further.

Item 2 is generally the bottleneck for any large OR
study, whether optimization or simulation. If there is
a tight deadline for this assignment and yet the data
is not available in the proper form (is it ever?),
there is not much more to be said. So, let us assume
that the deadline is not tight.

Step 4, initial model runs, is not difficult in itself.
However, the software to carry out these initial runs
must be obtained either through:

a. purchase
b. lease, or
¢. time sharing.

Options a. and b. generally require more than that the
OR group be familiar with large scale mathematical pro-
gramming. It is often the data processing department
which controls a firm's batch computing resources,
allocating time on "their" machines., Without DP
support, therefore, purchase or lease of optimization
software is not to be recommended. (Indeed, without
this cooperation, Step 3 and perhaps also Step 2 will
be difficult as well.)

Obtaining the data processing department's support for
an optimization application may require more than just
a good rapport between the respective managers of OR
and DP. Rather, some DP personnel should themselves
have prior familiarity with mathematical programming.
In this writer's experience, that is not a simple re-
quirement to meet. DP staff get far more reinforcement
for skills in software development. If a systems or
technical support analyst has worked previously with
even ordinary LP, it is more by coincidence than by
design. The only choice left for Step 4, then, is c.,
time sharing. It is expemsive, and by its very nature
is more conducive to a "one-shot" study than to an on-
going effort in PD modelling. As a result, there will
still be (apart from the OR group) no familiarity with
mathematical programming in the organization, either in
the data processing department or among potential
management users.

It is especially for such an organization that
simulation may be a real alternative to mathematical
programming. The capabilities required for use of a
simulation model are genmerally achievable. It is much
easier to explain to management what a simulation model
does. In addition to the OR group, the DP staff have
also had the experience with simulation, as witnessed
by the recent widespread use of corporate financial
simulation models (see Naylor {18,19]). Thus, assuming
availability of the computing resource, a PD simulation
is not likely to require outside time sharing and is
more likely than optimization to lead to an on—going
effort in PD modelling.

I have discussed the remarks of Geoffrion with about a
dozen industrial practitioners in Canada, and have yet
to hear one say that optimization would be of more use

to him than would simulation for distribution system
decisions. What is there about the real-world settings
in which these OR and distribution practitioners work
which make simulation more attractive? To shed some
light on this question, Section IV outlines the
management functions which must be carried out by an
organization's PD staff.

IV THE PHYSICAL DISTRIBUTION FUNCTION

"Physical Distribution" refers to that set of manage-~
ment activities which must be carried out to move
finished goods from the final production line to the
consumer. PD is thus the direct connection between
manufacturing and marketing, and generally includes the
management functions of:

. Inventory Control (finished goods)
. Customer Order Processing

. Materials Handling and Packaging

. Warehousing

. Transportation (traffic).

HUOW>

There may not be uniform agreement that PD includes
precisely the above, and no more and no less. TFor
example, the traffic manager of a vertically integrated
firm may be able to arrange that required raw materials
be carried as back-hauls in company-owned trucks. If
this becomes a regular activity, it would be logical
for Purchasing to be considered part of Physical
Distribution as well. Nevertheless, the discussion
here will suffer no loss of generality by confining
attention to the preceding five functioms, each of
which is assumed led by a person whoe title is "Manager
of ", with these managers all reporting to the same
individual, say the '"Vice-President — Physical
Distribution'". (Again, not all would agree that this
form of organization and reporting structure would be
best.)

The five functions A through E generally involve
operational decisions more than strategic ones. How-—
ever, there are important issues of strategy, often in
the area of overlap between two or more of these
functions, which is why they should be coordinated by
someone at the Vice-Presidential level. Familiar
examples of such strategic questions include:

i) Should one or more new warechouses be built, and if
so, where? (Tradeoff between the costs of in~
ventory carrying and transportation.)

ii) Should all products be stocked at every warehouse?
(Tradeoff between inventory carrying costs and
customer service.)

iii) Should air freight ever be used, or should all
shipments travel by surface mode? (Tradeoff be-
tween customer service and transportation costs.)

Only someone at a level higher than that of Managers of
A through E can resolve issues such as these which cut
across departmental boundaries; greatly impact the com-
pany's competitive posture; and may involve capital in-~
vestments of considerable size.

Question (i) is of the latter type and is not easy to
reverse if answered in the affirmative. (i) is clearly
a non-~routine decision of the sort that the Vice—Presi~
dent of PD should include as part of an intermediate -
or long-term facilities plan. An optimization model
would appear to be the appropriate tool if the number
of alternatives (feasible warehouse configurations) is
at all extensive.



340 James H, Bookbinder

Issues (ii) and (iii) are also strategic. They require
the Vice-President for coordination, but in contrast to
(i), are not cast in stone once decided. Questions (ii)
and (iii) are more typical of ones generally encountered
in Physical Distribution. Management needs a model to
estimate the detailed consequences of such issues.

They are at least partly operational and although not
"routine", still similar to those regularly met in PD.
Managers of A through E and the Vice-President would
greatly benefit from the appropriate 'what if'
simulation model here.

Naturally, these managers also confront numerous prob-—
lems within ‘their own purview, ones not cutting across
departmental lines. The managers must estimate the
implications of these every day decisions. Here again,
simulation modelling is genmerally the appropriate tool
to deal with shorter-range issues.

The discussion above focused on the management
decisions which are made in physical distribution plan—
ning and operations. Another way to approach the
question of model type is to study the data or inform-—
ation requirements, both from the point of view of that
needed to perform functions A through E, and also the
data necessary for use of a simulation or optimization
model. These are the subjects of Section V.

V__INFORMATION REQUIREMENTS

Ballou [2, Fig.13~6] has summarized the types of inform—
ation needed for logistics (PD) management. These
consist of myriad cost elements, often broken down into
their fixed and variable components, of essentially the
costs of managing functions A through E. These costs
elements are quite detailed, as may be seenby consider~
ing a specific example, that of transportation. The
main categories here are the costs of private carriage
and the costs of common/contract carrier.

There are 5 major types of operating costs associated
with running a company-owned trucking fleet: equipment
maintenance, terminal operations, insurance, transport—
ation (including fuel, labor and supervision), and
"other" costs (e.g., taxes and licenses). The capital
costs of private carriage include elements of depre-
ciation and financial charges. Private carriage will
not be considered further here, since it may be assumed
that a firm has done a one-time strategic study of the
risks and benefits of operating a private fleet. Even
if it has decided in favor of a private fleet, it will
still need occasionally in peak periods to contract
work by common carrier.truckers.

The latter is just one example of decisions which PD
personnel must often make concerning mode of shipment.
These decisions may lead to as many as 9 types of
common/contract carrier costs in Ballou's category:

. Rail Freight

. Rail Freight CL (car load)

Truck LTL (less than truckload)

Truck TL

Air Freight

Forwarders

Shippers Associations

. TOFC (trailer on flat car, or "Piggyback")
. Water Freight.

[

.

Obviously, for a given origin and destination, very few
of these 9 types need be considered. Nevertheless,
virtually every OD pair will have at least 2 mode
possibilities. It is by such choices, sometimes rou-
tine and automatic but often not, that the firm's

Manager of Traffic and Tramsportation earns his daily
bread.

Let us consider now these common/contract carrier cost

elements. They may be viewed as having the form
Cijklm’ where the subscript:
i indexes products
j 1indexes origins (factories)
k indexes warehouses (actual or candidate through
which goods are transhipped)
% indexes destinations (customer or customer groups)

m indexes mode (m=1,2,...,9).

In this case, the data required to manage traffic or
transportation are essentially the same as that re-
quired by the optimization model.

With the exception of mode m, the notation above is
that of Geoffrion, Graves and Lee [11], whose MIP

model employs freight rates which are weighted averages
reflecting the mix of modes and shipment sizes deemed
likely to prevail. How accurate is this approximation?
These authors feel it is quite accurate because each
customer { receives all its shipments of product i

from a single warehouse k. With this 1~1 correspondence
between pairs (k&) and product i, the annual quantity
shipped on that route (if used) can be assumed known,
hence so is the annual cost of transportation outbound
from the warehouse.

Because of production capacity constraints, such a 1-1
correspondence need not exist between factory-ware-—
house pairs (jk) and product i, hence there is less
knowledge of the inbound transportation cost on a given
link (jk) even if it is used. However, this is not the
major issue. The key point is rather that the model's
transport costs are annual figures. While it is cer-
tainly possible that these modal decisions and shipment
sizes may average out during the course of a year, this
cannot be known without doing at least a small pilot
test. One would choose certain (ijkf) combinations
and, employing representative shipment sizes randomly
drawn over the course of the weeks and months, make the
modal decisions in “real time" with the then prevailing

rates. This of course is one replication of a simul-
ation. Its use may assist in validating the transport

cost elements employed in the optimization model. The
ramifications, however, extend considerably further
than model validationm.

Transport cost elements have always depended upon the
particular product and mode, as well as the OD pair
involved. 1In recent times, however, deregulated rates
have been much more free to fluctuate. The effect of
deregulation, plus the probable importance of modal
choices, may make it less likely that the MIP model can
finalize the recommendations on distribution system
design. Rather, the best few warehouse configurations
should then be subject to further detailed testing, as
in the simulation above. This is an example of a
"hybrid" optimization/simulation model, which is the
subject of Section VI.

Before going on, however, we remark that the data re—
quirements of a simulation such as the Heinz model [22]
and especially the needs of one like the Distribution
System Simulator [4] will consist of much more than
simply transport cost elements. A simulation follows
in detail the flow of goods between echelons, which
requires knowing the "disciplines" on the queues of
customer orders at each echelon; possibly some details
of materials handling; and so on. It would rarely be
realistic to attempt a full scale PD simulation with
"everything" varying at once. However, to answer
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detailed questions appropriate to the concerns of one
of the Managers A to E, the number of variables and
parameters will be quite reasonable. TFor the Manager
of Transportation, decisions concerning modal choice
are of this type, and at least here, simulation is
competitive with optimization.

VI COMBINED SIMULATION/OPTIMIZATION MODELS

In this section, we consider models that are "hybrids"
of simulation and optimization or, more generally,
combined simulation/analytic models.

It should be recognized that optimization models in
particular, and analytic models in general, need not
represent a point of view entirely opposed to simul-
ation. Rather, the two model types can reinforce each
other. Ignalletal [13] have employed simulation as

an aid in the development and validation of analytic
models. Detailed simulations of travel times were
found to be quite consistent with simple analytic
expressions previously derived by the authors based
upon reasonable geometric arguments. This is the
simulation analog of Geoffrion's [8] use of an
analytically solvable "minimodel" in conjunction with
a large scale mathematical programming model. By
making certain simplyfying assumptions (e.g., demand/
unit area is uniformly distributed, candidate ware-
houses all have identical cost characteristics), he was
able to derive algebraic expressions for such quantities
as theoptimal number of open warehouses. Such express-—
ions greatly assist in obtaining insights from the
numbers output by the larger—scale model.

Traditionally, specialists in simulation or in opti-
mization have argued that these methodologies are in-
tended to address different issues. To some extent,
we have so argued in this paper. However, with in-
genuity, one can do almost anything with either model
type (simulation or optimization) that could be done
with the other. Solomon [24] has shown how stochastic
simulation may be employed for semsitivity analysis in
a product-mix linear program. More precisely, she has
emphasized that an optimization model must generally
take as constant or deterministic certain parameters
which are in fact stochastic. (One example of this is
the rate at which raw material or work-in-process
arrives at a production station.)

Extension of the latter reasoning would say that
generally one cannot optimize, since the data are un-
certain., Narasimhan [17] has made this point in study-
ing the problem of site selection for a warehouse or
other facility (although in fact he does not argue in
favor of simulation either). An experienced practi-
tioner of optimization, however, would have no trouble
in treating "uncertainty" via extensive sensitivity
analyses and parametric programming [8,12]. This
assumes, naturally, that one can isolate the sources of
uncertainty dnd that these are very few in number.

Just as one can essentially "simulate" with an opti-
mization model, one can attempt to "optimize" with a
simulation model. Smith [23] and more recently Biles
and Swain [1] have studied methodologies for the latter.
These approaches determine the best levels for the
simulation's controllable variables so that the output
"response” is optimized. If this is viewed as the
logical or mathematical generalization of the simul-
ation's results, it has somewhat the flavor of
Geoffrion's minimodel.

Zeleny [26, Chapter 10] has also pointed out that,
rather than optimizing a "given" system, it is much

more important to '"design an optimal system". For the
physical distribution problem, we contend that a pure
optimization model is inferior to a hybrid simulation-
optimization model to accomplish this optimal design.
(See our comments in Section VII. Geoffrion [7]
supports this point to some extent as well.) Indeed,
Nolan and Sovereign [20] have used recursive optimiz—
ation and simulation in their analysis of transport—
ation systems. Rosenfield and Norris [21] have dis-—
cussed "what if" modelling in physical distribution.
The latter's approach to scenario evaluation often
involves a sequential search in which an optimization
is a step within the sequence. They show several ways
in which "what if" (i.e., simulation) models may be
used in conjunction with optimization models.

It may also be important to comsider multiple criteria
in the planning and design of a distribution system
{15]. To date, such multiple criteria models have
generally been of the mathematical programming type
[26]. That is, these are of the form:

opt Z1

opt 22

subject to some constraints. In the PD context, we
wish to, say, minimize total costs and maximize
customer service. Naturally, these cannot be
accomplished simultaneously. The results of such a 2~
objective model would include the best tradeoff
possible between cost and customer service.

Well-designed simulation models [14,18] do of course
furnish a number of output measures. There is no
reason why several of the endogenous variables obtained
from a simulation could not be used as inputs to such a
multiple-objective mathematical programming model.

Today (1984) there appears to be less difference than
the textbooks would indicate between optimization and
simulation. In addition to a model which alternates
between these two types [20,21], an optimization model
may also be part of an interactive decision support
system (see, for example, Dyer and Mulvey [5]). A
simulation model (such as a corporate plamning model)
may contain an imbedded optimization routine for, say,
production plamming [18]. The interrelationship be=-
tween simulation models and optimization models for
distribution system planning may in fact hold in a
wider context.

VII CONCLUSIONS

In this paper, we have attempted to contrast the dif-
ferences between simulation models and their optimiz-
ation counterparts in the specific application to
physical distribution planning. Their relative
strengths and weaknesses have been highlighted in
several ways.

Simulation models were found to be more capable of
specifying the details of the management policies
implied by specific distribution system configurations
and customer service levels. It is easier to explain
to Management what a simulation model does. Intelli-
gent use of an optimization model requires that the
organization have prior experience with mathematical
programming. Analogous experience is no less required
for intelligent use of a simulation model, but it is
much more likely that data processing and management
personnel already have such exposure. One example of
this is the widespread use of simulation models for
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corporate financial planning [18,19]. Informal con-
versations with physical distribution and even OR
staff have indicated that a simulation model was per—
ceived to be of greater assistance than an optimiz-
ation model for PD decisionms.

This perception can be understood, however, by studying
as we did in Section IV the various management
activities in physical distribution. Although many of
these cut across departmental lines, the decisions
themselves are more operational than strategic., Thus,
while a decision to stock a particular product group
at only certain warehouses has important consequences
for marketing strategy, its implications can be easily
tested with a simulation model. If ome accepts the
hypothesis that most decisions in PD management are of
this type (important but not irreversible), then a
"what if" simulation model is seen to be of great
assistance to physical distribution Management.

Nevertheless, the mixed integer programming model of.
Geoffrion and Graves ([9,11]; see also [8,12]) would
be of great utility for the planning of a new distri-
bution system or a critical evaluation of an existing
one. Optimization is a more appropriate tool here,
since it can implicitly evaluate all the thousands of
warehousing alternatives available when, e.g., we are
to consider both the relocation of existing warehouses
as well as increases or decreases in the number of open
distribution centers. The work of Geoffrion has en-
joyed great academic and bottom-line success, and
deservedly so. This optimization will output the best
configuration of warehouses and the corresponding
factory-warehouse and warehouse-customer assignments.
Although the modified (adaptive) version [25] of the
successful Heinz simulation [22] does drive "ineffi-
cient" warehouses out of the solution, this model is
still limited to evaluating in detail only those dis-—
tribution configurations which have been pre-specified.

An increasingly popular way for the modexrn practitiomer
to approach PD decisions and operations is '"Distri-
bution Resource Planning" [16]. DRP recognizes the
dependent nature of the demand between successive
levels in a multi-echelon distribution system. (This
is analogous to MRP for manufacturing where the demand
for a component part is dependent on the demand for the
"parent" item containing these components.) The
"distribution structure tree'" of DRP expresses which
factories Fl’ F2, ... serve which warehouses Wl, W2,

W3, ... and which of these in turn serve the various

retailers R Rn. The detailed operations of a DRP

12000
system are quite straightforward to study with a
simulation model. The precise design of the distri-
bution structure tree, however, is exactly what is out-
put by Geoffrion's optimization model.

In Section V we reviewed the data and information re-
quirements for optimization or simulation models and
for PD management decisions. We specifically con~
sidered the decisions on the mode of tranmsportation by
which shipments between two given points should be sent.
Although Geoffrion's work treated modal choice as an
"average'" over all modes, we argued that the choice of
mode is an important decision in PD, especially in
light of recent deregulation in transportatiom rates.
The accuracy of this averaging over transportation mode
must therefore be tested by simulation.

The latter is one illustration of how simulation and
optimization can be used together and can reinforce
each other, as we discussed in Section VI and as
Geoffrion [7] has discussed as well. Such combinations

of simulation and analytic models may be expected to
be more prevalent in the future, and in other contexts
beside that of physical distribution.
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