Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

s

HIERARCHICAL DECOMPOSITION AND SIMULATION
OF MANUFACTURING CELLS

Charles J§. Antonelli
Richard A. Volz
Trevor N. Mudge

Robot Research Division
Center for Robotics and Integrated Manufacturing
Electrical and Computer Engineering Department
The University of Michigan
Ann Arbor, Michigan 48109
(313) 764-4343

ABSTRACT

A useful tool in the development of flexible automation
is a system description language which can generate a
complete functional description of a manufacturing cell
of arbitrary complexity. We propose a description
gsystermn based on the concept of hierarchical
decomposition utilizing the Ada' programming language
in conjunction with established diagrammatical
decomposition methods. Simulation is often an
indispensable tool in the development of manufacturing
systems. We show how a simulation of the operation of
the manufacturing cell can be embedded in its
description. Finally, we apply the methodology to a
specific instance of a manufacturing cell.

Keywords

System Description Language, hierarchical
decomposition, functional description, manufacturing
cell simulation.

INTRODUCTION

A recurring problem in designing manufacturing cells 1s
the lack of a suitable framework on which a correct
functional description can be built. Manufacturing cells
contain a number of complex subsystems whose
operations and interactions must be uniformly
described, such as various types and quantities of
programmable controllers, CNC machines, material
handling and storage systems, robots, and a host of
other general- and special-purpose equpment. Each
such unit requires a different set of time-sequenced
inputs and outputs in order to perform its function.
These inputs and outputs can utilize discrete /0 lines,
analog channels, or synchronous and asynchronous
communication protocols. Each. of these
communication media must meet differing rate
requirements and require differing error recovery
strategies.

Manufacturing cells make parts. A potentially extensive
database must be maintained to accurately reflect the
current states of all parts flowing through the cell, as
well as the current state of all units in the cell. The
heterogeneous nature of the cell dictates widely
differing data representations, access requirements,
and access rates.

In view of the preceding, we believe that a functional

description of any manufacturing cell should possess at
least the following attributes:

! Ada is a registered trademark of the U. S. Government Ada Joint
Program Office.

Completeness.
The functional description must completely specify
the manufacturing cell in question. This implies
that all interactions between the components of
the cell, implicit and explicit, must be accounted
for.

Consistency.
The constituent parts of the functional description
must be consistent with each other. Rate and
protocol must be consistent from sender to
receiver on a point-to-point data link; parts output
by a unit must correspond to the input
requirements of a succeeding unit.

Lase of Understanding.

The functional description must be easily
understood at varying levels of detail. It must be
possible to gain a high-level understanding of the
entire cell without the burden of excessive detail; 1t
must also be possible to gain a detailed
understanding of any particular component of the
cell.

Amenity to Simulation.
It should be possible to develop a simulation of the
system from its description, either by executing
the description directly, or by providing a
translation method whereby the description is
transformed into a series of simulation statements
which can then be executed.

At present, it is possible to give quite specific functional
descriptions of each component of a manufacturing cell.
These descriptions take the form of manufacturer's
specilications, wiring diagrams, shop floor layouts, and
so forth. However, 1t is difficult to combine these
descriptions into a coherent set of specifications at the
manufacturing cell level, particularly one amenable to
simulation.

One way of achieving a uniform set of functional
descriptions 1s through a system descriplion language
which can completely describe a manufacturing cell at a
suitable level of detail. Such system description
languages are in widespread use. For example, IBM's
PDL[1] is a procedural high-level language used in
writing software specifications. As another example, the
ISDOS Project's[2] PSL/PSA is a database-oriented
high-level language wused in describing arbitrary
information systems. Through use of such a language it
is possible to define a regular descriptive methodology
that can be applied equally to a broad class of systems.

In this paper we examine the use of the United States
Government language Ada[3] as the basis for formally
describing manufacturing cells. Descriptions at
multiple levels of detail are obtained by a hierarchical
decomposition technique. A mapping is defined between
a diagrammatical representation of a hierarchical
decomposition and a set of Ada tasks. A method of

416

Charles J. Antonelli, Richard A. Volz, Trevor N. Mudge

transforming the Ada description into a simulator of the
system is also described.

It is well known that decomposing a difficult problem
into several simpler subproblerms allows a solution to be
obtained when direct methods fail. The problem is
broken into several subproblems, the subproblems are
solved, and the problem solution is defined in terms of
the subproblem solutions. If the subproblems
themselves are difficult, they are broken into smaller
subproblems. This decomposition continues until the
individual subproblems can be solved.

We apply this technique to the problem of generating
functional descriptions of manufacturing cells, utilizing
two complementary descriptive formats. In the
diggrammatical decomposition format, we present a
diagram of the functional description. The hierarchical
decomposition is shown as a series of nested diagrams,
and directed lines between elements of the diagram
describe the data and control flow. This format allows
the reader to obtain a quick, intuitive understanding of
the meanufacturing cell being described. In the
procedural decomposition format, we present an
equivalent functional description written in a procedural
description language based on the Ada programming
language. The hierarchical decomposition is shown as a
series of nested packages, and task rendezvous describe
the data and control flow, The procedural
decomposition is much more detailed and gives the
reader a complete functional decomposition of the cell
being described.

This hierarchical concept imposes a great deal of
structure on the description process. While the task of
generating a complete description of a large
manufacturing cell remains formidable, the method of
hierarchical decomposition provides a way of
systematically generating correct functional
descriptions to any desired level of detail.

Both methods are illustrated in greater detail below.

DIAGRAMMATICAL DECOMPOSITION

The basic unit of diagrammatical decomposition is the
bor (see Figure 1). There are a number of inpufs to a
box, a number of oufpufs from the box, and a function,
mapping the inputs to the outputs, performed by the
box. This procedure in which a box operates on its
inputs to yield its outputs is central to our hierarchical
decomposition scheme. The first, or top, level of
decomposition is a description of the manufacturing
cell, and the inputs and outputs are the actual inputs

and outputs of the cell. Since we are describing the
total operation of the cell and we are describing the
function of the cell only, we do not distinguish at this
level between physical objects and data objects which
are operated on by the system; this partitioning occurs
only at the bottommost level of decomposition.

In order to perform the hierarchical decomposition, we
also consider the box to be an entity which encloses a
particular level of decomposition. In this light, the
exterior and interior of a box relate to the
decomposition operation in the following way.

The exferior of a box describes the current level of
decomposition. This description takes the form of a DJO
block, which we define to be a common descriptive unit
consisting of a description of the function performed by,
a list of inputs to, and a list of outputs from the box
representing the current level of decomposition. In
other words, the DIO block of the box exterior
completely describes the current level of decomposition
to the reader. In Figure 1, the depicted box resides at
the first level of decomposition. The inputs are part I
and part 2, the output is pert 3, and the function
performed by the box is the assembly of part 1 and part
2 to produce part 3. This level of decomposition does
not describe how the assembly is to be performed, only
that it is to take place.

The iniferior of a box contains a collection of subbozes.
Bach subbox is described by a DIO block as stated
previously. The collection of subboxes forms the next
level of decomposition; their DIO blocks, taken together,
form the same functional description as the DIO block of
the enclosing box, the critical difference being that the
subbox DIO blocks are more detailed.

One of the subboxes is designated as a control subbox,
and its function is to serve as a manager of control and
data flow within the box by specifying, if required, the
order in which the other functional subboxes should be
invoked, what inputs they should be invoked with, and
what outputs they should return to realize the
description of the enclosing box's DIO block.

In Figure 2, the box of Figure 1 has been opened to
reveal the subboxes inside. We call the process of
opening a box a decomposition step. The functional
subboxes f, , fz ., and fg3 represent the three
operations "pick up part 1", "pick up part 2", and "join
parts”, Together these three operations realize the
description of the enclosing box. The dashed lines
represent inputs and oulputs between subboxes which
are local to the box interior, while the solid lines
represent inputs originating from and outputs destined

Part 3
Part 2

ParJt 1 l

Make Part3

Pigure 1: Box Exterior

Part 3
Part 24
Part 1
Control
* U
J - lL?L 1 ¢
f1 f2 f3

Figure 2: Box Interior

Hierarchical Decomposition and Similation of Manufacturing Cells

for the box exterior. While it is possible to think of f,
and f, happening concurrently, f3 must wait for them
to complete before proceeding. This flow of control is
determined by the control subbox, as indicated by the
broken lines.

It is easy to see how one recursively descends in the
hierarchical decomposition by opening subbozes to
reveal other subboxes contained within them. This
process continues until a level of decomposition is
reached at which further partitioning is unnecessary. In
our example, a subbox whose DIO block specifies the
operation "close gripper on robot arm 1" is probably not
amenable to further decomposition. We can view the
successive decompositions of a cell as a tree which
represents a collection of descriptions at different
levels of detail. The leaf nodes of each subtree whose
root is identical to Lhe root of the tree itself correspond
to a single description.

We emphasize the difference between hierarchy of
decomposition and hierarchy of control. Our
hierarchical decomposition is primarily a description of
a manufacturing cell. As such, the functional boxes are
abstractions and do not in general have physical
counterparts in the cell itself. At some level of
decomposition, however, the functional boxes should
correspond to physical entities, portions thereof, or
control program procedures, and the inputs and
outputs are associated directly with the terminal
subboxes.

PROCEDURAL DECOMPOSITION

The diagrammatical decomposition method provides an
elegant way of decomposing a manufacturing cell.
However, in its present form it does not provide much
information about the timing and synchronization of
interactions between subboxes. Secondly, it is difficult
to represent a great amount of detail in a concise
manner. Finally, it is not immediately obvious how to
simulate the actual cell directly from the
diagrammatical decomposition. To deal with these
problems we use a procedural decomposition language
to describe the hierarchical decomposition.

Procedural Decomposition Language

We represent the functional units of the procedural
decomposition as Ada tasks, just as we represent the
functional units of the diagrammatical decomposition as
boxes. We have chosen tasks instead of procedures or
functions because a task is a more general construct.
Tasks can execute in parallel and thus provide a more
natural description of simultaneous events than
sequential constructs do.

At a given level of decomposition, a task must convey
the following information. First, it must show the
interconnection with other tasks by characterizing the
inputs and outputs of the task and by describing how
these inputs and outputs are synchronized with each
other and with those of other tasks. Second, the task
must provide a description of the function it represents.
In general, these two classes of information are
intermixed inside the task.

Whenever a step in the decomposition is made, a task is
replaced by a set of tasks whose combined input,
output, and synchronization characteristics subsume
those of the original task. This expressly allows the set
of tasks to exchange input, output, and synchrounization
information among themselves. In Figure 3, task A is
replaced by tasks B, C, and D. Task B is also shown to
output some local information to task C.

b1y

Inputs Qutputs Inputs Outputs

Figure 3: Results of Decomposition Step

The inputs and outputs destined for the original task
must now be dispersed to and collected from the set of
tasks which replaced it. In order to isolate other parts
of the description from changes required by a
decomposition step and to provide a mechanism for
dispersing and collecting the inputs and outputs, we
introduce the artifice of an interface task which serves
as a buffer between the other tasks in the description
and the tasks of the current level of decomposition. It
does nothing more than present its inputs to these
tasks and present their outputs at its outputs. In Figure
4, task A is replaced by tasks B, C, and D as before, but
task A' 1s introduced to provide an interface between
them and the rest of the description.

The Ada language provides a passive encapsulation
mechanism called a package. Tasks can be grouped
inside a package and isolated from or made visible to
other tasks outside the package as desired. We place
the tasks generated by the decomposition step in a
package and make them visible to the interface task
which remains outside the package. This partitioning of
the decomposition into packages provides for a more
understandable description and allows portions of a
large description to be compiled separately. In Figure
5, package P surrounds tasks B, C, and D.

The process of decomposition continues by performing
decomposition steps on tasks and encapsulating the
results of each such decomposition in a package. This
results in a tree of packages as seen in Figure 8. At
some point it becomes unnecessary to decompose a

Inputs Outputs Inputs Outputs

TN

Figure 4: Interface Task

118

Charles J. Antonelli, Richard A. Volz, Trevor N. Mudge

Inputs Outputs Inputs OQutputs

I

A'\
P /14

e I ~
A B C D

Figure 5: Task Partitioning

Plz
=] [(=]
]]

Figure 6: Package Tree

task any further; we call such a task a ferminal task.

Simulation Considerations

A simulation of a manufacturing cell deseribed in the
procedural description language can be realized by
observing that the .description of inter-task relations
using Ada tasking constructs as the basis for the
description actually provides the basis for simulation
control software which supports a process oriented
simulation scheme,

¥We can replace the function descriptions in the terminal
tasks with process oriented simulation statements.
These are generally very simple construects, such as wait
statements to simulate the passing of time while the
function represented by the task is performed. We also
need to add some support software to manage the
process oriented simulation, such as scheduling
routines, clock managers, and so forth. In this fashion a
simulation of the manufacturing cell can be easily
obtained.

Sometimes 1t is also possible to replace the terminal
function descriptions with real control software to
supervise directly the operation of an actual
manufacturing cell. Consider the different types of
entities that can be represented by the task inputs and
outputs, Actuel parts, such as those being constructed
by the manufacturing cell, are represented by certain
types of data objects. Other data objects represent
control signals required to operate the cell. Still other
objects represent pieces of data essential to the
execution of the simulation. It is important to partition

the inputs to tasks representing real control software in
such a manner that a task receives only those inputs
which it could logically receive in the actual
manufacturing cell environment.

Procedural Decomposition Language Implementation

In order to maintain a close relationship between the
disgrammatical and procedural decompositions, we
have standardized the usage of Ada in the procedural
decomposition language in the following way.

As previously stated the functional units of the
procedural decomposition are represented as Ada tasks.
Each such task has the form shown in Figure 7. A task
is identified according to the following naming
convention, Each task name consists of the identifier ¢
followed by a number of subscripts, e.g. #;;, . The
number of subscripts indicates the lewel of
decomposition at which the task resides. The value of a
subscript differentiates between tasks at a particular
level. For example, f, indicates the first task of the
decomposition which resides at level 1. After a step in
the decomposition is made, ty, indicates the third task
of the set which replaced task i, This process
continues to an arbitrary number of levels. For
notational brevity we shall use #; to represent a task at
an arbitrary level of decomposition.

The task specification contains a DIO block and a list of
entry points to the task. The DIO block performs the
same function for tasks as for boxes; that is, it
describes the function, inputs, and outputs of the task.
It is implemented in the form of Ada comments. The
inputs to the task are represented by % and outputs
from the task are represented by 0; entries in the DIO
block. Each entry consists of a list of items input to or
output from the task.

Each task has at least two entry points which are
invoked by the Ada rendezvous mechanism: stort, at
which peint the inputs required by the task as listed in
the DIO block are accepted, and stop, at which point the
outputs generated by the task as listed in the DIO block
are returned. Additional entry points accessed by other

task ¢; is
-- DIO £;:
-- description is ...
-- inputs are [; .
-- outputs are 0; .
entry start (I;) ;
entry stop (0;) ;
entry ...

end ¢; ;

task body {; is
begin
loop
accept start () do
LOCAL I := I ;
end start;

LDCAL_D;, = F—,,(LOCAL..[;) H

accept stop (G;) do
O; ;= LOCAL_O; ;
end stop;
end loop;
end £; ;

Figure 7: Task Implementation

Hierarchical Decamposition and Simulation of Manufacturing Cells 419

tasks in the same package are also listed in the
specification.

The task body contains statements which realize the
function of the box as described in the DIO block., The
task body is in the form of an infinite loop. The starf
rendezvous accepts the inputs to the task and makes a
local copy of these inputs in LOCAL [, . This is done
because the actual parameters are accessible only in
the body of the accept statement. The lask then
performs its function as described in the DIO block,
indicated by the function F; which represents a series of
executable statements operating on the local copy of
the inputs and yielding a local set of outputs in
LOCAL_O; . The task may rendezvous with other tasks in
the same package in order to carry out F;. Finally, the
stop rendezvous returns the outputs of the task by
copying them from the local outputs. Following this, the
task loops to accept a new set of inputs. This repetitive
sequence of accepting inputs, performing the function,
and returning outputs is called a cycle.

When a step in the decomposition is made, the task
shown in Figure 7 is replaced by the one shown in Figure
8, and a set of tasks named f;5 through f;, 1s
generated. In general, n will be different for each
decomposition step. Figure 9 shows the general form
for each of these tasks by describing task f;;, where
0=j<n. The relationship between the original task and
the interface and generated tasks is governed by the
three relations

n
Fi=Ffy;
=0
n
Lol
=0
n
0, cy 0
j=0
which show that the collective function of the generated

tasks is identical to the function of the original task and
that the collective input's and outputs of the generated

task £; is
-- DIO til
-- descripticn is ...
-- inputs are [, .
-- outputs are C; .
entry start (%) ;
entry stop (0;) ;
end £; ;

task body ¢; is
begin
loop
accept start (%) do
LOCAL I; := [;
end start;

t; o.start (LOCAL 1) ;
t; o.stop (LOCAL_0;) ;

accept stop (0;) do
0, := LOCAL O, ;
end stop:
end loop;
end ¢; ;

Figure 8: Interface Task Implementation

tasks subsume the inputs and outputs of the original
task.

The set of tasks is enclosed in a package named p; as
shown in Figure 10. The naming convention for
packages is identical to that for tasks; a package name
is given the same subscripts as the that of the original
task. There are two parts to an Ada package as shown in
Figure 10: the specification and the body. Everything
that is to be accessible to the exterior of a package
must be listed in the package specification; everything
else in the package body is hidden from view. Thus the
package specification only contains a description of the
control task; it is the only task that must be visible, for
it will be invoked from a task in a different package at
the next higher level of decomposition. The remaining
tasks are invoked from the control task, or can invoke
each other, and thus need not be visible outside the
package.

The inlerface task is identical to the original task
except that the statements representing the function Fj
are replaced by start and stop rendezvous calls to the
generated task f;o . We have arbitrarily given £;, the
job of sequencing the execution of the remaining tasks
in p; ; therefore we call it the control task. The control
task body is shown in Figure 10 and is similar to the
original task; the difference is that the function
performed, F;o , consists primarily of starf and stop
rendezvous calls with the rest of the tasks in p; . Each
of these rendezvous passes the subset LOCAL [; ; of local
inputs LOCAL_I; required by £, ; and returns the subset
LOCAL_O; ; of local outputs LOCAL 0; generated by £; ;.
This is shown in Figure 10, where the subsef function
indicates the appropriate subset.

There is a similarity in form between the generated task
t;; and the original task £; . This similarity allows
further decomposition steps to be taken by replacing
t;; with an interface task and by generating a set of
replacement tasks enclosed in a new package p;; . This
process of decomposition continues until the terminal
level of the decomposition is reached. At this level each
task contains statements to perform or describe the

task ti,j is
-- DIO ti‘jt
-- description is ...
-- inputs are [;; .
-- outputsare (; ; .
entry start (f; ;) :
entry stop (0; ;) :
entry ...
end t‘-_J- ;
task body £; ; is
begin
loop
accept start (/; ;) do
LOCAL I; 5 := Iy ; ;
end start;

LOCAL 0; ; := F; j(LOCAL 1, 5) ;

accept stop (0; ;) do
FRL AL Oy ;5
end stop;
end loop;
end £ 5 ;

Figure 9: Generated Task Implementation

Charles J. Antonelli, Richard A. Volz, Trevor N. Mudge

420

package p; is
task £; 0 is

end t,,;'g N
end p; ;
package body p, is
- ;0
task body £; ¢ is
begin
loop
aceept start (I;) do
LOCALJ;.:=I1: '
end start;

t, ;.start (subset (LOCAL.L,)) ;
t;,;.stop (subset (LOCAL_0;)) ;

accept stop (O;) do
0-;2=LOCAL_0¢_ N
end stop;
end loop;
end f; 4 ;

task £; 5 is

end £ ;;

--DIO £ ;

task body #; ; is
begin

end & ;

end p; ;

Figure 10: Generated Tasks with Enclosing Package

functions that can no longer be subdivided. Thus the set
of all terminal tasks plus all control tasks contains the
entire functional description of the manufacturing cell.
By including appropriate simulation statements at the
terminal level it is possible to generate a simulation of
the operation of the cell.

SIMULATION METHODOLOGY

In conventional process-oriented discrete event
simulation systems a number of simulation processes
appear to execute in parallel. In fact, only one such
process is executing at a given time, and that process
continues to execute until it chooses to stop, at which
time the simulation system schedules another process
for execution. This process-oriented simulation scheme
utilizes one master simulation clock and a list of
processes that are scheduled te run at various
simulated times. The simulation scheduler, when
informed that the currently executing process wishes to
relinquish control, adds the previously active process to
the list of waiting processes, chooses the process with
the smallest simulation clock value, and executes it.
Since only one process executes at a given time, it is
never hnecessary to roll back simulated time in the
course of a simulation.

In a parallel discrete-event simulator in which there are
many processes executing concurrently a single master
simulation clock no longer suffices. Consider two
processes A and B which are executing simultaneously.
Suppose A schedules another process C to run at time £,
and subsequently gives up control. Assume C turns out
to be the next process that is activated, with the master
simulation clock set to t,. If B, which is still running,
schedules another process D to run at time £z, where
£a<f, , we are faced with the problem of having to roll
back the simulation clock to 3 and undoing whatever C
has had a chance te do in the interval [fp£;] . It is
evident that we must provide a mechanism for
managing the master simulation clock in an appropriate
manner to avoid this rollback,

We have developed such a mechanism for use with our
description system. As previously stated Ada tasks
represent the [unctional units of the procedural
decomposition. Possibly executing in parallel, these
tasks must mutually manage the master simulation
clock. We supply each task with a local simulation clock
in addition to the master, or global, clock. Each task
consults its own local clock to determine its course of
action; the local clock thus completely determines a
task's view of simulation time. This local clock is
synchronized with the master clock whenever the task
invokes one of the primitives explained below,

Each of the tasks must be able to advance its local clock
and rendezvous with other tasks as required to carry
out the simulation. The following four primitives are
sufficient:
Wait.
A task wishes to advance its local clock by a given
amount. When execution of the task resumes, its
local clock will be incremented by the specified
time.

Intend Lo Rendezvous.

A task wishes to rendezvous with another task. In
this case both the invoker's local clock and the
local clock of the task having executed the
corresponding accept may require updating. When
the rendezvous takes place, both tasks will have
their local clocks set to the larger of the original
local clocks.

Intend to Accept.
A task wishes to accept a rendezvous with another
task, In this case both the invoker's local clock
and the local clock of the task having executed the
corresponding rendezvous may require updating.
When the rendezvous takes place, both tasks will
have their local clocks set to the larger of the
original local clocks.

Relinquish.
A task wishes to relinquish control without
specifying a time at which 1t is to resume.
Execution of the task will resume at a future time
after other tasks have been given a chance to run;
its local clock will be set equal to the new global
clock. Inclusion of this primitive is necessitated
only by a lack of multitasking support in our
current Ada run time system.

The executing tasks are managed. as follows. At any
given instant there are a number of executing tasks as
well as a number of tasks waiting to execute at specific
times. Bach such task is called a client task and is
described by a sfate, which identifies whether the task
is running or in one of several wait states, and a
wekeup.time, which gives the global clock value at
which time the task wishes to resume running. There 1s
also a simulation confroller which serves as a scheduler
for the client tasks and contains entry points, in the

Hierarchical Decomposition and Simulation of Manufacturing Cells

form of accept statements, for each of the actions listed
above.

Whenever a task needs to performn one of the four
actions, it performs a rendezvous with the simulation
controller which changes the sfate of the task from
running to a wait state, If the desired action is "wait",
then the simulation controller calculates the time at
which the task should resume executing, based on the
task’s local clock and desired wait interval, and updates
the wakeup._time for that task. As long as there are still
other running tasks no further action is taken; the
remainder of the running tasks are allowed to continue.
This is the key concept that removes any requirement
of rolling back the master clock. Only when there are
no more running tasks will the simulation controller
examine the list of waiting processes, determine the
new global clock value from the waiting task with the
smallest wakeup time, and resume running all waiting
tasks whose wakeup times are equal to the new global
clock. The simulation controller also sets the local
clocks of all resumed tasks equal to the current global
clock; the tasks henceforth reference their local clocks.

The "intend to rendezvous” and "intend to accept”
primitives are managed somewhat differently. Since a
rendezvous requires two parties, a task indicating an
intent to rendezvous without a corresponding partner
task having previously indicated an intent to accept, or
vice versa, is suspended and is not allowed to resume
execution until the partner task issues its intent to
complete the rendezvous. Once both tasks have
indicated their intent to rendezvous the simulation
controller updates their wakeup_times to the larger of
the two task local clocks and places them in a wait
state. The tasks are then resumed as in the preceding
paragraph. Note that tasks paired through a
rendezvous are resumed at the same time due to their
identical wakeup-times. Because of the asymmetric
nature of the Ada rendezvous in which the task issuing
an accept does not know the identity of the task making
the rendezvous it is necessary to queue tasks which
have indicated an intent to rendezvous with a target
task until that target task indicates an intent to accept.
The queueing discipline is FIFO and is provided in the
simulation controller,

Finally, the "relinquish" primitive places the task in an
indefinite wait state. When the simulation controller
next updates the global clock the task will be resumed
with its local clock set to the new global clock. The
wakeup time of the task is undefined and plays no part
in the calculation of the new global time.

CASE STUDY

Utilizing our method of hierarchical decomposition we
have generated a description of a machining cell which
is shown in Figure 11. The manufacturing process
involves machining preformed metal stock by milling,
turning, and rolling threads. The cell contains two
robots loading and unloading a CNC mill, CNC lathe, and
rolling and gaging machines. Both robots have two sets
of grippers so that a finished part may be unloaded
from a machine and a new part inserted into the same
machine without the need for moving the robot between
these operations. The mill and lathe occasionally
require the first robot to exchange dull tools for sharp
ones; the tool carriers are similar in size to the parts
and may be handled with the same grippers.

The hierarchical description comprises three levels.
The first level describes the operation of the complete
cell, and lists the inputs and outputs to the
manufacturing cell as a whole. For example, an input is
"stock’’, which describes the metal stock the cell takes

421

| Mil I

| Lathe J
Cell input

Intermediate
output

Thread
roller
Cell output

Figure 11: Machiming Cell

in; and an output is "good_parts”, which describes a
properly manufactured part which the cell puts out.

The second level provides more detail and splits the box

into a control subbox plus five functional subboxes:

Milling and gaging.
A description of the first third of the
manufacturing cycle, in which the first robot
accepts parts from a parts presenter and causes
the parts to be milled and gaged.

Turning and gaging.
A description of the second third of the
manufacturing cycle in which the first robot causes
the parts to be turned and gaged.

Thread rolling and gaging.
A description of the final third of the
manufacturing cycle in which the second robot
causes the threaded portion of the parts to be
rolled and gaged.

Mill tool change.
A description of the mill tool changing procedure,
which is required after a given number of parts
have been milled.

Lathe tool change.
A description of the lathe tool changing procedure,
which is required after a given number of parts
have been turned.

The corresponding diagrammatical decomposition is
shown in Figure 12, where the directed lines indicating
control flow between the control and functional
subboxes have been omitted for clarity.

The execution sequence of these functional subboxes is
determined by the control subbox. Note that the
milling and turning portions of the part cycle must be
performed sequentially in the order stated since both
the mill and lathe are served by the same robot. This
restriction does not apply to the thread rolling portion
of the cycle since it is served by the second robot. It is
natural, therefore, to write the control subbox as two
independent tasks, each of which controls one of the two
robots. Further, the tool change operations and the
machining operations are mutually exclusive, and the
control subbox must prevent the milling and turning
control tasks from executing while any tool changes are
in progress.

The third and final level of decomposition splits each of
the first three level 2 subboxes above into more
subboxes. The tool change cycle is not further
decomposed so that level 2 represents the terminal
level for tool change portion of the description. This

-

422 Charles J. Antonelli, Richard A. Volz, Trevor N. Mudge

-- Define task to sched (ggp-port identifies the task).
sched.activate{ggp_port);

Moko purt put_line("get_green parts: start");
loop
— Indicate intent to rendezvous.
[Conteol l sched.ita(ggp_port.local_clock);
-~ Receive updated local clock from sched
Bad parts - when OK to continue.

lJ_J 'J_J IL port_ggp.recv({local clock);
! -- Perform accept.
Sock ——~| Milling , Turning Rolling L+ Good parts accept start:

Bad tools
il Lethe — Record event at current local time.
tooling tooling comment("Accepting part from parts presenter™);
-- Generate new entity (part).

Good toals local_entity.access := new entity_record_type;
local-entity.access.part_description.process_initiated
Figure 12: Sample Diagrammatical Decomposition 1= true;
local_entity_access.part_description.part_code
1= part_number;

part_number := part_number + 1;
illustrates that portions of the description may be more

detailed than others depending on the needs of the -- Indicate wait.

modeler. For instance, the milling and gaging subbox is sched.wait(ggp-port.local_clock,present_part. time);
further decomposed into a level 3 control subbox and —~ Receive updated local clock from sched

twelve terminal subboxes. One of these subboxes - when OK to continue.

simulates the acceptance of input stock by the first port_ggp.recv(local clock);

robot. This is simulated through the task that
represents this subbox which advances its local clock by
an arnount of time indicative of the time needed for the
robot to accept the part from the parts presenter and
updates somne values in a data structure to indicate that
a new part has been obtained. The task representing
this subbox is shown in Figure 13,

-- Set "part unloaded” attribute.
local entity._access.part_description
.parts_presenter_unloaded := true;

— Indicate intent to rendezvous.
sched.ita(ggp_port,local_clock);

- Receive updated local clock from sched
-- when OK to continue,
port_ggp.recv{local_clock);

--specification identification is get_green_parts; -- Perform accept.

- accept stop(output_entity_access:

-~-decomposition identification is £.3.3; out entity.record_access)

--decomposition level is 3; do

-~specification type is functional; output_entity_access := local_entity_access;

--superior is milling_and_gaging; end stop;

-~siblings are (end loop;

- level Ba_control, end get_green parts;

- move_to_parts_presenter,

-~ move_to_mill, Figure 13: Sample Task

-- unload_milled_parts,

- load_mill,

- mill, The DIO block lists the description, inputs, and outputs

- move-Lo.gage, of the task

- unload_gaged parts, '

-— load_gage, The other two level 2 functional subboxes controlling the

- gage, manufacturing cycle are decomposed in exactly the

- move_to_parts disposer, same fashion. The milling and turning portion of the

- dispose_bad-part); cell may produce parts at a faster or slower rate than

- the thread rolling portion of the cell; a bounded buffer

--description is has been provided to model an intermediate part

- Obtains two green parts from parts presenter, storage unit. The simulation is capable of stopping the

- placing them into the two lower grippers. first robot when the capacity of intermediate storage is

--end description; exceeded, and of starting it again when the number of

- parts in storage has been reduced.

--input list is . . iy

- (stock); ?he outpuf, prqvuled by the execgtmn of theA description

- is shown in Figure 14. It consists of a time-ordered

--control list is - Part of input list series of event reports and additional information about

- (make_parts); -- expanded for clarity, the state of the simulation. Lines of the form

- "task_neme: processing” indicate that the task

--output list is identified by fesk-name has just received a new set of

- {green_parts); inputs and is starting to perform the function outlined
in its DIO block. Every control task in the description

task body get_green_parts is indicates the start of a cycle in this manner.

local entity_access: entity_record.access;
part_number: natural := 1;
localclock: time := 0;

begin

Lines of the form "time! event" indicate that event
occurred at time on the global clock. For example, the
mill was started 24 time units after the start of the

Hierarchical Decomposition and Sigulation of Manufacturing Cells

simulation at time zero. Thus these lines give a time-
ordered view of the simulation.

In addition, the level 2 control tasks output a block of
information at the completion of every cycle, which lists
the contents of the various stations in the cell. In
particular, the contents of the stations in the mill and
lathe portion of the manufacturing cell are listed at the
end of the milling and turning cycle. The part residing
in each station is listed along with the current
attributes of the part. Attributes help describe the
state a part is in at a given time during the
manufacturing process; for example, the condition of
being milled is an attribute, I1f a part possesses an
attribute a corresponding indicator is set true,
otherwise it is set false. In Figure 14, the mill is shown
to contain a part on which processing has been initiated
(P1), which has been unloaded from the parts presenter
(PPU). and which has been loaded into the mill (ML).
The part does not possess any other attributes at this
stage of the manufacturing cycle. The rest of the
stations are shown to be empty.

The description is executed until the desired amount of
data has been obtained about the manufacturing cell. It
is a simple matter to change the time required to
perform the various activities and obtain multiple
simulation runs. It is only slightly more difficult to
change the model by modifying the description and the
affected task bodies and to compare results for
different cell configurations.

CONCLUSIONS

We have shown how the well-known idea of hierarchical
decomposition can be applied to the problem of
supplying detailed descriptions of an arbitrary
manufacturing cell, and how a suitable choice of a
procedural decomposition language makes possible the
simulation of a manufacturing cell so deseribed.

A further area of investigation would involve defining
and providing a procedural decomposition language that
can generate Ada-based descriptions and simulations
directly.

ACKNOWLEDGEMENT

We gratefully acknowledge the contributions of A. W.
Naylor to this effort.

References
1. Sammet, Jean E., Douglas W. Waugh, and Robert W.

Reiter, Jr., "PDL/ADA - A design Language Based on
Ada,"” Proc. ACM Annual Conference, (November
1981).

2. Problem Statement Longuage (PSIL) / Problem
Statement Analyzer (PSA) User’s Reference
Manual (PSA Version A5.2), Department of
Industrial and Operational Engineering, The
Univirsny of Michigan , Ann Arbor, Michigan (July
1982

3. Reference Monual for the Ada Programming
Longuage (ANSI/MIL-STD-1815A-1983), Ada Joint
Program Office, OUSD(R&E), Washington, DC 20301
(February 17, 1988).

level_3a comtrol Toce: ssln
level”3c_control Ero
07 Moving robo 1 to g s Tesenter,
0. Movin % athe g3ge acceplor.
}g rI}ccxixﬁ 1ngh a.rt, ron aTLg Prosenter.
: Moy 0 N,
22. No prevlously rocessed Eart. in =111,
22" ee art into
24" snarl.l %
24. Movin obol,

34° No préviously
N No rovxoubxy

1 age en
lathe turnin 58

and gapxﬁg
1evol‘3b gon roli- Eroces

lathe
rgvlously processed art. in lathe.

rocessed grt in =111
rocessed Barv. to load

Rrocesslng

2
2% m111 gage.

49. o
48* Kot 1ng l.o 1oad 1
232 Lathe t 1 to lathe gage.
84} Rr%vlously Brocessea art to load into lathe gage.
64: Lac 0 gage em
----- AME, ===~ MH.LIHG TURNING ROLLING
PART K PGRT PHM MHM MMMMLT ITLLL LLLLLTT ITTITT TTIGB PP
IPLC UGG GGGDPLC TRUGG GGDAARR RRRGG GGGPP cT
u LC TRUL LC TRLLULC TRULC TRU T
Robot 1 upper gripper:
Robgb’I lower gripper:
i
Part 1TTTF OFFFF OFFFFF OFFFF OFFFFFF OFFFF OFFFF OF
M111 gage
Mllg dlsposer
Lathe!
<emgny>
Lathe’ §age:
emgby
Lathe”digposer
Ly>

{emp
Lathe’ acceptor”
<empty>

Figure 14: Sampie Output

423

