Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

391

A GENERIC ROBOT SIMULATOR

D. L. Kimbler, Ph.D., P.E.
Associate Professor
Department of
Industrial and Management Systems Engineering
University of South Florida
Tampa, FL 33620

ABSTRACT

A significant problem in both educational and
industrial systems is access to development systems.
Universities typically have neither funds nor space
for a broad variety of industrial robots. Few
manufacturing concerns can afford the luxury of
robots dedicated to system development and training.

An alternative to industrial robots is a physical
simulation system. This system should include a
robot capable of a broad range of motions and a
controller capable of emulating robot controllers.
The key to this system is its software, which
provides a structure which allows the system to be
tailored to specific needs,

Such a system is a large undertaking. This report
describes a beginning in developing this system.
While the resulting system is specific to a single
robot, it is expandable and adaptable to other robot
families,

INTRODUCTION

Of all kinds of simulation, physical simulation is
one of the most versatile, More than just an iconic
model, the typical physical simulation uses a
control system to provide a realistic decision
process and uses a functioning physical system to
demonstrate the results of control actions. A
physical simulation may allow large complex
industrial systems to be studied with less
investment in equipment and space. This has led to
extensive use of physical simulation in educational
institutions and during planning stages of
industrial plant expansion and renovation.

The generic robot simulator is an attempt to expand
physical simulation in robotics to allow several
different robots to be simulated by the same system.
This system would allow the user to select a robot
from a computer menu. The selection would then
enable that robot's command language, letting the
user develop programs in a realistic software
environment. Program execution would then drive a
small-scale robot, simulating operation of an
industrial system.

This implementation of a generic robot simulator is
based on a generic control language [1] and a
scaled down working envelope. The generic language
is a robot control language which could be used on
its own. High level languages are compiled into the

generic language for execution. The scaled work
envelope allows portability of programs from
industrial robot to simulator, with no modification
to point definition.

The system described here has both advantages and
disadvantages. The software is written in BASIC,
allowing ease of portability and extension. A
resulf, however, is also slow execution and limited
program size in a microcomputer installation. The
small scale robot selected is the MICROBOT
Minimover~5. [2] An obvious disadvantage is that
only a half sphere of envelope can be simulated, and
the speed range cannot duplicate industrial
articulated arms. This is one result of physical
simulation. Comprimises are made at the expense of
fidelity where the alternative is exact duplication,
not simulation., The only serious lack of fidelity
in this system is the use of an articulated arm,
which reduces the effect of simulated cylindrical
systems and specialized arm configurations. The
software is also the result of compromise, in that
not all commands can be adequately simulated. From
these compromises, however, comes a system that can
be used effectively to simulate a production system
at a fraction of system cost and space.

THE GENERIC LANGUAGE

The generic language is a set of operation codes
that can be used to control a robot. This language
is an intermediate level language comprised of 23
primitive commands in four groups: motion, point
data, modification, and program control. These
commands cause direct motion, control hand opening,
orient the robot in its cartesian system, control
execution, and display data. The result is a
language capable of directing motion, branching,
integer addition, conditional execution, and
communication.

All calculations are performed in a five cell
accumulator, allowing point data to be stored for
five axes. The program counter keeps track of the
command in execution. There is also a stack, to
hold program counts and subroutine returns. The
program itself is a sequence of decimal operation
codes and their parameters. Execution is a series
of subroutine calls based on operation code, with
the program counter incremented in the execution
routines. The result is a very simple but effective
execution language.



392

INSTRUCTION GROUPS

The four instruction groups provide all commands
necessary for simple robot control. These commands
are stored as numeric codes followeéd by numeric
arguments in an array OBJ. A pointer OC identifies
the index of the array containing an executable
code. Point definitions are stored in cartesian
form'in array P, with a corresponding array PNT$
holding point names. User variables such as
counters are stored in array VAR, with names in
VARS.

Four motion commands are used for arm control. MOVE
directs motion to the point stored in the
accumulator. STLINE approximates a straight line by
executing MOVE over a series of short distances.
HAND code is followed by an argument which specifie§
the size of the hand opening, and can cause an open
or close. OHAND has as an argument a hand opening
width, which is tested against the actual opening.

Point data commands manipulate coordinates and
orient the robot. LOAD causes a specified point to
be put in the accumulator. STORE takes them from
the accumulator and puts them in the point array.
CHANGE has three arguments, and modifies the x, y,
and z components of the accumulator. NDIR is used
to find the current wrist direction 'cosines of the
point in the accumulator. NEAR uses these cosines
to find the axis nearest to the tool angle. COORD
has an offset along the tool angle as an argument,
and defines a new point an offset distance along the
tool ray. CTOOL and CBASE are used to modify points
by applying tool and base transformations to
succeeding moves. '

Modification commands deal primarily with character
strings and variables. VALUE calculates the value of
a numeric argument or-a variable name. STVAR
retrieves a value from the accumulator for storage,
PVAR converts it to a string, and TYPES displays it
. on the screen. CSPEED is used to set a new motion
speed.

The primary execution control command is CHIN, which
sets the object code array index to the argument of
CHIN, thus allowing direct branches. Branching
logic is supplied by TEST, with its arguments of
relational operator and the index for next command
if the condition is true. Subroutines are
implemented using STACKA, which increments the stack
pointer and pushes the return index, and STACKL,
which decrements the pointer. Execution is
terminated by QUIT, and short pauses are executed
using TIME,

Execution proceeds by inspecting OC and executing a
module ideritified by OBJ(0OC). This proceeds
sequentially until the code for CHIN, STACKA, or
STACKL are encountered. Various commands place or
retrieve items in the accumulator. TEST, for
example, expects the first two elements to hold
values for comparison. These values are put there
by LOAD. A message may be output by repeatedly
LOADing 'characters and executing STVAR, PVAR, and
TYPES.

D. L. Kimbler

1

SYSTEM TRANSLATION

The translator is presently programmed for VAL £31,
the command language for Unimation robots.

Selecting the PUMA 600 menu option sets scaling
factors and arm limits for the PUMA robot. Points
are checked for validity in both the PUMAand
MICROBOT arm envelopes. Expansion of this system to
other robots would require tables of arm limits for
point validation.

Compiling proceeds in two steps. The first pass
searches for recognizable source language names and
converting them and their arguments to generic code.
This pass also includes syntax checking, The second
pass searches for control transfers and labels, and
adds this information to appropriate generic
operation codes. After compiling, error messages
are printed and 'control is passed back to the menu
level,

Translation in the first pass consists of successive
calls to subroutines which parse high level commands
and store operation codes and arguments. The VAL
translator consists of 34 modules, allowing almost
all VAL programs to be executed, Several VAL
commands are not supported due to complexity,
infrequent use or both. The VAL translation table
is shown in the Appendix. As shown in the table,
very useful programs can be constructed. VAL
commands with no generic equivalent are accepted but
ignored. Illegal commands result in error messages.

One aspect of VAL not simulated is its operating
system. The program itself is a sort of menu driven
operating system, allowing disk storage and
retrieval, program editing, point teaching, and
execution, During point teaching the arm is
controlled from the keyboard. When the arm is in a
desired position, the point is identified by name
and its coordinates stored. Points may be recalled
by name and altered after being taught. Files are
stored as character strings, with all program lines
followed by point definitions.

BASIC IMPLEMENTATION

The initial implementation of this system is in
Applesoft BASIC in an Apple II +. ([4] The
Minimover - 5 is interfaced using the MICROBOT
ARMBASIC firmware card, which adds robot commands to
BASIC. This implementation is fully operational,
but it has two disadvantages -~ speed and size,

Execution speed is limited by the translation of
BASIC code. This is compounded by the motion limit
tests that require several calls to transcendental
functions to verify legality of each move for both
PUMA and Minimover ~ 5. As a result, there is a
discernible pause between moves, while computation
for the next move takes place. Compiling is a
potential solution., The size-of the program,
however, prevents compiling it as a unit. Compiling
would also make it more difficult to modify and
extend the system.



A Generic Robot Simulator 393

Size is also a problem in extending the system to
other robots. At the outset of the project the
intention was to include several robots in the
system. This is no longer feasible. Instead,
extension to other systems can be done by replacing
translation routines, leaving the execution system
intact. The result would be a collection of
programs with a common structure, rather than a
single large program.

The speed problem has been reduced by adapting the
software to a Zenith Z-~100 microcomputer and a
MICROBOT Teachmover. The Teachmover is mechanically
identical to the Minimover - 5. It has the
advantages, however, of serial communications by RS-~
232, allowing it to be used with a broader range of
computers. It also has a teach pendant and can be
used without a computer, making it more versatile in
a laboratory.

The use of an 8/16 microcomputer, even in
interpretive BASIC, is an improvement. A further
improvement can be had by compiling, which is
possible on the Z-100 with sufficient memory. After
compiling, there is no discernible hesitation
between moves, and overall system operation is
improved.

With minor changes, notably in data communication
statements, the Zenith version has been installed on
an IBM-PC in BASICA. 1In addition, the program has
been modified to use the MICROBOT Alpha, the larger
industrial counterpart of the Teachmover. To add
more realism to the Teachmover, an I/0 module with
four inputs and outputs has been developed., This
module can be used to operate small motors and
solenoids, and receive discrete inputs such as
switeh closures. This module is also used with the
Minimover—~5

The system is presently operating in several
configurations. Using an Apple II+ with ARMBASIC
and Apple Super Serial interfaces, the software can
use a Minimover - 5, Teachmover, or Alpha. The
Zenith Z-100 and IBM-PC interface serially to
the Teachmover and Alpha. 1In unrelated research an
Alpha was controlled by a Hewlett Packard 9816, It
is expected that adaptation to other microcomputers
would be simple, assuming that sufficient memory and
a serial interface controllable from BASIC were
available,

CONCLUSION

This research began as an attempt to develop a
useful and flexible way to simulate industrial
robots in an academic environment, as a means of
exposing students to a variety of systems at low
cost. While the only system completed is the VAL
System, the expandable structure is there. As a
VAL simulator, the project has been successful, The
system has been used at the University of South
Florida with good results in student robotics
laboratory assignments. One valuable result is that
our PUMA is now available for more research while
increasing course offerings in undergraduate
roboties instruection.

The development and expansion of the system has also
been valuable for the graduate and undergraduate

students involved. The availability of a system
that has so many characteristics of industrial
robots yet is available and open to experimentation
is valuable indeed. At various levels of detail,
this system has been used by students from the high
school to doctoral levels.

Finally, this system has been valuable to the author
for its defects as well as its good points. Several
lessons learned have yet to be implemented, but are
expected to be highly useful. Many techniques used
and techniques learned are readily transferable to
industrial systems. As modular, interconnected

robot systems proliferate, these techniques will
become very useful.

ACKNOWLEDGEMENT

The original program upon which this report is based
was done by Thomas A. Lacksonen during his MS work
at the University of South Florida. System
enhancements and expansion were developed by Dulio
Furtado and Cesar Malave, doctoral students at USF.
Their contributions to the success of this project
are gratefully acknowledged.

APPENDIX

The following commands are grouped according to
function, as presented in the body of the report:

Name Function

MOVE Move to point in accumulator
STLINE Interpolated straight move
HAND Open hand

QHAND Find hand opening

LOAD Load point or numeric data
STORE Store data in table

CHANGE Modify accumulator

WDIR Find hand direction

COORD Find offset along DIR ray
NEAR Identify nearest axis
CTOOL Change tool transform
CBASE Change base orientation
VALUE Convert string to numeric
STVAR Store accumulator value
PVAR Convert numeric to string
TYPES Put string on screen
CSPEED Change arm speed

CHIN Modify code pointer

TEST Branch on condition

STACKA Push address and branch
STACKL Pull return address

QUIT Stop execution

TIME Pause

These commands are converted to VAL commands by the
following correspondence:

VAL GENERIC
MOVE Load, move
MOVES Load, Stline

DRAW Load, Change, Move



D. L. Kimbler

394
ALIGN Load, Wdir, Near, Move
APPRO Load, Wdir, Coord, Move
APPROS Load, Wdir, Coord, Stline
DEPART Load, Wdir, Coord, Move
DEPARTS Load, Wdir, Coord, Stline
READY Load, Wdir, Coord, Move
OPENI Hand
CLOSEIL Hand
GRASP Hand, Ohand, Test, Chin
SETI Value, Stvar
TYPEI Pvar, Types
HERE Load, Store
SET Load, Store
SHIFT...BY... Load, Change, Store
TOOL Ctool
GOTO Chin
IF...THEN... Value, Value, Test, Chin
GOSUB Stackq
RETURN Stackl
STOP Quit
DELAY Time
SPEED- Cspeed
BASE Cbase
TYPE Types
SIGNAL Commo
WAIT COMMI

The following commands are allowed but ignored
(commands not listed are typed as errors):

REMARK RIGHTY
ABOVE LEFTY
BELOW 7 FLIP
NOFLIP

REFERENCES

1. Lacksonen, Thomas A., Ceneric Robot Simulator
with Microbot and Microcomputer, M.S. Thesis,
University of South Florida, Tampa, Fl. 1983,
95 pages.

2. Hill, John, "Introducing the Minimover-5,"
Robotiecs Age, 2, 2, 18~27, Summer, 1980.

3. Unimate PUMA Robot Manual 398H. Unimation, Inc.

banbury, Ct, 1980.
L. Applesoft II: Basic Programming Reference
Manual, Apple Computers, Inc., Cupertino, CA.
1978.




