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ABSTRACT

The general linear metamodel has been found to
be an effective tool in post-simulation
analysis. This paper addresses the multiple
response problem in simulation and proposes a
multivariate general linear metamodel as an
aid in understanding and interpreting simu-
lation results. Such a metamodel was
developed using multiple response data
generated from an M/M/1 gueueing system
simulation. The results supported the
author's contention as to the value and
validity of this type of multivariate
technique in simulation.

INTRODUCTION

The simulation model, although simpler than
the real-world system, is still a very
complex way of relating input to output.
Since one of the aims of most simulations
must te to gain an understanding of this
relationship, an even simpler model may be
used in addition to the simulation model.
When a model is used as a device in order to
better understand and explore a more complex
model the simpler, auxilliary, model is
frequently referred to as a metamodel.
Obviously, this auxilliary model will not be
merely a simplified version of the simulation
model, since if the simulation model could
have been simplified, the researcher would
have done so.

Several authors have pointed out the need for
an analytic auxilliary model, a metamodel, to
aid in interpretation of the more detailed
model: Geoffrion (5), whose concern was with
mathematical programming models; Blanning
(2,3,4), who championed the use of metamodels
for all kinds of management science models;
Lawless et al (13) and Rose and Harmsen (15),
who made explicit use of metamodels for
sensitivity analysis. As Pegels (14, p.203)
so aptly demonstrated, use of a metamodel
means that simulation analysis and analytic
technigques do not have to be two divergent
paths. The two techniques can work hand-in-
hand to achieve the aim of the experimenter.
Ignall et al (7) also advocate that one take
advantage of the potential benefits of both
simulation and analytic models.,

*faken from the author's doctoral disserta-
tion submitted to the Faculty of the
Polytechnic Institute of New York in partial
fulfillment of the requirements for the
iegree Doctor of Philosophy (Operations
Research), 1983,
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The use of a metamodel in post-simulation
analysis has many benefits, some of which are:
model simplification, enhanced exploration
and interpretation of the model, the
unraveling of a model's dynamics in order to
gain a better understanding of the system's
behavior, and generalization to models of
other systems of the same type. In addition,
many hypotheses regarding the system may be
tested without the need for additional
simulation runs to generate new values.
Inverse questions are more easily answered,
e.g., given a particular value for a response
variable, what input value (factor level)

is possible?

One simple metamodel favored by some simu-
lation researchers, notably Kleijnen (8,9,11,
12), is the additive model of experimental
degign, often generalized as a "regression”
model, The linear regression metamodel can
provide additional information regarding the
relative contribution of each input factor to
the solution. In this paper, this model will
be referred to as a general linear model (or,

metamodel). In general, it may be
represented as:

k
yi = BO + ?ajxij + ai’ i=1,...,n

Figure 1 is a pictorial representation of the
three levels of explanation of a system's
Qynamics. The first level, the real system
itself, is unapproachable by the researcher,
hence, the motivation to simulate. At the
second level, the simulation model (flowchart
or computer program) is "leaner" than the
real system although it does attempt to
replicate the real system both on a macro and
a micro level. At the third level, the
analytic (in this case, linear additive)
metamodel attempts to approximate and aid in
the interpretation of the simulation model
and, ultimately, of the real-world system
itself. 1In the current research, a multiple
response metamodel developed from simular
data is shown to be a good approximation to
tpe relgtionships inherent not only in the
simulation model but also in the real system
itself (see Table 4),

Depending on the experimental layout, whether
the factors are quantitative or qualitative,
and the aim of the study, the general linear
metamodel (linear in the parameters, not
necessarily in the x's) in Figure 1 may be
applied to regression analysis, analysis of
variance, analysis of covariance, t-test,
paired t-test, ete.
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Figure 1: Single Response Simulation Analysis

Whether a researcher explicitly says so or
not, designing simulation experiments which
will be analyzed via one of these statistical
tests implies the use of this general linear
metamodel in one of its forms (see 16,17).
And, in fact, the explicit use of a general
linear metamodel enables one to interpret the
simulated system more easily and more fully
especially with regard to performing
sensitivity analysis, answering what-if
questions, and optimizing over "infinitely
many” system configurations, within a
specified range (10).

In a multiple regponse simular experiment
we again see that there may be three levels
of explanation of the system's dynamics.
These levels are presented in Figure 2, and
are identical to those in Figure 1 except
that there is more than one dependent
variable, hence, more than one measure of
effectiveness is of interest to the
gimulation. The multivariate simular model
may be visualized as:

Vig™ Tn(XyqoXgor e aXgpdd 5ps f%""'g
Ty ey
where p represents the number of responses,

n represents the number of replications, k is
the number of input variables, x..is the
value of the jth input variable id the ith
replication, y. 1s the value of the mth
response in the ith replication, and &,
is the experimental error of the mth im
response in the ith replication. This
experimental error is approximated by the
random number streams upon which the
simulation depends.

In a multiple response simulation experiment,
a multivariate metamodel must necessarily be
proposed. The multivariate extension of the

general linear metamodel is:

k
.= + X, b E. i=1l, .4
Yim= Po ?BJle im® ;:1:...,p

or, in matrix form,

Inxp= Enxkg-kxp+ gnxp

It can be shown that many multivariate
statistical techniques and the univariate
techniques of experimental design, are
specific cases of this general multivariate
linear model.

THE STUDY

A simulation experiment was performed using
a SIMSCRIPT II.5 program of an M/M/1
queueing system. The experiment generated
10 independent replications of each of the
following five single-server system
variations:

ARRIVAL Rate: 9 9 12 15 18 /hr
SERVICE Rate: 10 12 16 20 20 /hr
These systems were selected judgmentally as
moderately to heavily congested M/M/1
queueing systems (i.e.,, utilization factors
from .75 to .90). Three measures of
effectiveness were output from the
simulation runs: The average number of
demands in the system (L), the average
system waiting time per demand (W), and

the average utilization per server (UTIL).

In developing the metamodel, the Ffirst
impulse was to fit a multivariate iinear
regression model with three response vari-
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Pigure 2:Multiple Response Simulation Analysis
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ables (L, W, UTIL), two main effects (ARRIVAL,
SERVICE), and the two-way interaction effect.
However, a preliminary attempt to f£it Jjust
such a model showed that it fit the data
poorly. 1In fact, Kleijnen (9) warned of the
existence of such a problem in constructing
univariate regression metamodels from
queueing system simulation data and suggested
several solutions.

A different approach was taken based on the
knowledge that an important determinant in
the behavior of M/M/1 queueing systems is the
ratio ARRIVAL/SERVICE (i.e., RHO). This led
to the hypothesis of the following functional
relationship (MOE = Measure of Effectiveness):

B
(ARRTVAL); ™

v, (1)

(MOE)im = Uy im

B
(SERVICE) iz“‘

where i, the index for observations, goes
from 1 to n, and m, the index for
measurements, goes from 1 to p. Taking the
natural logarithm of each side gives:

ln(MOE)im= 1n o ¥ Bimln(ARRIVAL)i

- (32mln(SERVICE):.L +in Vg (2)
A gimple change of variables, and the
familiar linear regression equation is
obvious:

Yin® Pom * Pinf1i - Ponfes * Ein (3)
For the sake of clarity, the change of

variables is listed here without i, the index
for observations:

Yl = In(L)
Y, = In(W)
Y3 = In{UTIL)

Bom:" ln(a)m' m=1.2:3
Xl = In(ARRIVAL)
= 1n(SERVICE)

M
1

= In(v),

The least squares estimates for £os Bys and
B, are, respectively, b,, b,, and b,.

T&ble 1 gives these estgmatés and their
standard errors, As Table 2 indicates, the
multivariate linear regression model
specified was a significant effect in
explaining the responses, as were the two
main effects. Further model exploration was
not necessary as the test for overall lack

of fit was not significant, and the model was
accepted. For further discussion of the
Wilks' lambda (A) statistic and the F-test
derived from it, the reader is referred to
(1), Table 3 displays the results of similar
statistical tests for the individual
regressions (on each dependent variable), laid
out in the familiar analysis of variance
table.

Thus, the multivariate linear regression
metamodel for the M/M/1 queueing system
studied may be expressed either in matrix form

Table 1

Multivariate Regression Model Estimates

8ingle-Server Queueing System Simulation

Estimated Regreasion Coefficients

S B 5
by 2.77 2.97  -0.01%
by 5.75 476 0.97
by 5.75 5.76 0.97
Standard Errors of the Coefficients
i *2 Js
B(bo) 0,108 0.104 0,010
s(bi) 0.125 0,121 0.011
s(bz) 0.124 0.120 0,011

Bnot significantly different from zero

Table 2

Multivariate Regression Model

Tests of Multivariate Hypotheses

Source Wilks* A ¥ d.f, P
Model 0.00000154 10754.93 6, 90 <,01
Xy 0.00275375 5432,13 3, 45 <.01
Xp 0.00518288 2879.15 3, 45 <,01

Lack-of-fit 0.98084468

0.1% 6, 86 >,10

Table 3

Regression Analysis Table by Response Variable

Sum of Mean
Responge Source d.f. Squares  Square £ B
Y Model 13,1870 6.5935 109%#.90 <.01
1 Residual 47  0.28%0  0,0080
Lack of fit 2 0.0003 0.0002 0.03 >.10
Pure error 45 0.2827 0.0063
Total 4y 13.4701
¥, Model 2 1h.9768 7,484 1332.96 <.01
Residual L4y 0.2640 0.0056
Lack of fit 2 0.0004  0.0002 0.03  >.10
Pure error 45 0.2636 0.0059
Total 49 15.2409
Y Model 2 0.37k9 0.1874 3787.02 <.01
3 Residual 47 0.0023  0,0001
Lack of fit 2 0.92E-5  0.46E-5 0,09 >,10
Pure Error 45 0,0023 0.0001
Total 49 0.3772
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or as p (p=3) individual equations. The
coefficients in these equations were taken
from Table 1 and then rounded.

1n§Lg=2.8+ .81n€ARRIVAL§—5.81n(SERVICE; (&)
In{w)=2,8+4,8In(ARRIVAL)-5.81n(SERVICE (5)
In(UTIL)=0+0.971n(ARRIVAL)-0,971n(SERVICE) ()
There would be no point in the regression
analysis if we could not arrive back at the
original (predictive) functional relationships.
This we do by raising both sides of each of
the three regression equations o a power

of e:

8
_ _2.8/ARRIVATY"
L= " *(SRvIcE, (7)
8
2.8/ 1 ARRIVATY '
W= e (ARRIVAI) SERVICEi (8)
0.97
uTTL = (ARRIVAT (9)

SERVICE,

These functions may now be used toward any of
the purposes put forth at the beginning of the
paper. One of the more interesting taskg,
perhaps, is the exploration of the relation~
ships among the response variables. It is
clear, for example, that

L = (ARRIVAL) (W)

which ig the well-known queueing theory
relationship first demonstrated by Little
(6, p.60). Another relationship which comes
to the fore is

(10)

L = ¢2+8(urtm) 6, (11)
Similarly, we see that
W = e2+8(1/arRrTVAL) (UTTL) 6. (12)

For a simulation model which represents an
extremely complex and dynamic sysbtem,
isolating relationships as simple as these
would be very valuable and rewarding.

A priori knowledge, in this case, of the true
relationships underlying the M/M/1 queue had
a beneficial by-product: the determination of
whether the metamodel, two steps removed from
the original (analytic) gueueing model on
which the simulation program was based,
actually did predict relationships as it
should have. For this purpose, 12 new points
were selected (having congestion rates
similar to those of the original five) and
the measures of effectiveness were calculated
using both the appropriate queuveing theory
formulas, and relationships (7), (8), and (9).
These two groups of calculations are
displayed in Table 4 and are obviously quite

close. In fact, using the ratio
[Metamodel - Analytic]
Analytic
as a measure of error, the average error in T
was 7.71%, the average error in W was 7.72%,

and the average error in UTIL was 0.50%.
Thus, the metamodel was accepted as a valid,
simplified, representation of the M/M/1
queueing system in the range studied.

LIMITATIONS

As useful as a multivariate linear regression
metamodel is in simulation analysis, it still
leaves something to be desired, In fact,

Linda Weiser Friedman

Table %
A Comparison of the Simulation Metamodel
to the Analytic Model

Single-Server Queuding System Simulation

Analytic Metamodel

Arrival Service

Rate Rate L W UTIL L W ikys
8 9 8,000 1.000 0,889 8.060 1.007 0.892
8 10 4,000 0,500 0.800 4,374 0.547 0.805
9 11 4,500 0,500 0.818 4.983 0,554 0,823
10 12 5.000 0,500 0.833 5.543 0.554% 0,838
11 1 5.500 0.500 0,846 6,056 0.551 0,850
12 1 6,000 0.500 0,857 6.523 0.544 0.861
12 15 4,000 0.333 0.800 4.374 0.364 0.805
13 15 6.500 0,500 0,867 6.959 0,535 0,871
1% 16 7.000 0,500 0,875 7'366 0.525 0.878
15 18 5,000 0.333 0.833 5,543 0.369 0,838
16 18 8.000 0.500 0.889 8.060 0.504 0,892
18 21 6.000 0,333 0.857 6.527 0.363 0.861

three separate multiple regression equations
were developed. The multivariate aspect came
into the analysis only when the models were
tested using the statistical tests of
multivariate analysis of variance (Table 2).
The variance-covariance matrix did not enter
into the analysis and, thus, the dynamic
interrelationships among the response
variables were not used directly in the
analysis. Fubure research should investigate
other multivariate techniques which do take
the variance-covariance matrix into account
in order to aid in the interpretation and
exploration of complex system simulations
which output data on three or more response
variables,
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