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ABSTRACT

The overwhelming majority of research into
the design and analysis of simulation assumes
that only a single response variable is of
interest to the researcher, This is an
impractical assumption. In these introduc-
tory remarks, the problem of multiple
response in sgimulation analysis is addressed
and some solutions are discussed.

INTRODUCTION

For some time now, researchers have inves-
tigated the design and analysis of uni-
response simular experiments. However, it is
a rare system simulation which outputs only a
single measure of effectiveness for analysis.
The researcher conducting a simulation
experiment will probably find that results
must be analyzed on more than one dimension.
These measurements will, in all likelihood,
be correlated. Thus far, research into the
statistical design and analysis of multiple
response simular experiments has been sparse.

There is a fair-sized body of scientific
papers published since the late 1960's which
is concerned with the statistical analysis of
gimulation output data (7). The over-
whelming majority of this body of work
ignores the multivariate aspect of simular
output data and approaches the various
simulation concerns from the perspective of

a single output measure, Until very recently,
the few researchers who did take notice of
the problem of multiple response have, for
the most part, mentioned it and then avoided
it, That is, the assumption was made, either
implicitly or explicitly, that there was only
one response variable of interest to the
researcher. Even some otherwise complete
textbooks such as Gordon (8) and Fishman (6)
ignore the multiple response problem.

SOME SOLUTIONS

A small handful of authors have attempted
to analyze multiple response simular data
using techniques which, as we shall see, are
inferior to the multivariate statistical
methods. Two technigues which have been

3

taken in part from the author's doctoral
dissertation submitted to the Faculty of the
Polytechnic Institube of New York in partial
fulfillment of the requirements for the
degree Doctor of Philosophy (Operations
Research), 1983,

proposed to solve the multiple response
problem are: performing several univariate
analyses on the same set of data and

combining the responses into a single response
function. These two were presented first by
Naylor et al (24, 25), then by Hunter and
Naylor (12), and subsequently by Shannon (31).

A general problem with performing several
univariate analyses on the same set of data
is that it does not take into account the
interdependence among the response variables.
This interdependence is almost always present
in system simulation experiments. When
several univariate hypothesis tests are
performed on the same set of data and no

ad justment is made to the significance level,
there is an additional problem. The problem
is that when several tests are performed,
each at a particular significance level, say
a=.,10, the significance level for the whole
study (i.e., the experimentwise error rate)
does not necessarily remain at an alpha of
.10, The probability of at lease one of
these univariate tests producing a signifi-
cant result, when indeed only random
variation is present, increases greatly as
the number of individual tests increases.

The alpha (Type I) error is the probability
of rejecting the null hypothesis when it is
true. If only one statistical test is
performed, an alpha level of .10 results in
a 90% confidence coefficient ((1-0)x100%) for
the study. If, however, several univariate
tests are performed on the same set of data,
the actual experimentwise error rate ranges
from a low of alpha, if the different
measures are perfectly cgrrelated, to a
maximum value of 1-(1-a)*, if the measures
are mutually independent, where p is equal to
the number of measures for which individual
univariate statistical tests are performed.
Suppose four (p=4) simultaneous statistical
tests are performed, each at a significance
level of a=.,10, on four responses measured
from the same data set (a simulation
experiment). The experiﬂentwise alpha level
may be as high as 1-(.9) = .3%, hardly an
appropriate significance level by anyone's
standards,

One old and commonly used approach is to
scale down the univariate significance level
in order to maintain the desired experiment-
wise error rate. This may be done either

via the so-called Bonferroni approach (see 16,
21) in which the individual significance
levels are set to ap/p, where ap represents
the desired experimentwise erro¥ rate, or by
algebraically manipulating the formula
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ocE_=1—(1—a)P in order to solve for a. Thus,

with p=4, if the experimentwise error rate is
to be set at .10, the univariate alpha level

would be set at a=.025.

Tt should be noted at this point that this is
an overly conservative approach., The chance
that one will commit a beta (Type II) error
-- that of falsely accepting the null
hypothesis -- is increased, and the power of
the test is reduced. After all, since the
worst is assumed, that is, mutual independence
(which is not usually the casge), one is
obliged to employ an extremely low univariate
alpha level. In the example cited above, it
will usually be difficult to reject the null
hypothesis when testing at a significance
level of .025., For the not uncommon situa-
tion where p=10 and the desired experiment-
wise error rate is .05, the individual alpha
must be set at .005, an even more unreason-
able significance level,

There is another problem with performing
geveral univariate tests on the same set of
data. Sometimes, one may find that each of
the probabilities (that H, ig true)
asgociated with the ten different
univariate tests falls short of the signi-
ficance level required for rejection. Thus
one might erroneously conclude that all of
the null hypotheses were true. However, were
a multivariate statistical test performed on
the data, one might find that the multivari-
ate null hypothesis should indeed be
rejected. How can this happen? To draw

an analogy, while getting two of a kind in
poker may not be unlikely, getting it ten
times in a row may be extremely improbable.

Sometimes, the multiple response problenm is
"solved" by combining the various responses
in some fashion (e.g., linearly) into a
single outcome variable by means of a
"eriterion” or "utility" function, using
subjectively-assigned weights. A general
method for assigning these weights I given
by Kotler (17). This, of course, eliminates
the multiple response problem entirely.
However, as with any aggregation procedure,
much valuable information may be lost, In
addition, when weights are assigned
subjectively to the responses of a simulation
experiment, the researcher must provide
strong justification for his choice of
weights and extreme caution must be
exercised in the analysis and interpretation
of any results of the study. Montgomery and
Bettencourt's (22) extension of response
surface methodology to handle multiple
responses made use of just such a uwtility
function.

MULTIVARTIATE STATISTICAT, METHODS

There has been rare mention in the simula-
tion literature of multivariate statistical
analysis. Research into the application of
nultivariate statistical techniques to the
analysis of multiple response simular
experiments is virtually nonexistent. A
few texts, such as Mihram (20,p.396),
Kleijnen (15,p.407), and Shannon (32,p.227),
have raised the possgibility that these
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technigues may, indeed, be applicable to
simulation.

McArdle (18) presented a case for the
application of 2pg-linear modeling, a
discrete multivariate method, to the analysis
of Monte Carlo simulation data (e.g.
robustness studies). The first simulationists
to attempt the use of the multivariate
analogue of the two-sample t-test were Balcl
and Sargent (2) and Schruben (29). Seila

(30) developed a multivariate estimate of the
mean response for regenerative simulations.

It has been argued (15, p.407) that just as
the classical univariate statistical analysis
techniques of physical experimentation have
been found suitable for use in the analysis

of uni-response gimular experiments, so will
the tools of multivariate statistical analysis
prove to be suitable for the analysis of
multiple response simular experiments.

Consider, for example, the commonly used
simular experiment of comparison. This type
of experiment may be designed to test the
effects of various treatments (e.g.,
different policies) on the responses of the
simulated system or to compare two or more
alternative systems with regard to certain
measures of effectiveness., When more than
one measure of effectiveness is used, a
multivariate statistical test should be
considered. Treating a simulation with

P response variables as p experiments with
one response variable each is inferior to
multivariate analysis which not only
improves the significance level but also
enables the researcher to get a better idea
of how the responses behave together. Some
multivariate techniques which are appro-
priate for experiments of comparison include
the two-gample Hotelling's T2 test and
multivariate analysis of variance (MANOVA).

RATIONALE

Any argument in favor of the applicability
of multivariate statistical meth ods to
simulation analysis must be based upon four
major points: +the experimental nature of
simulation; the multivariate central limit
theorem; the robustness of certain
multivariate statistical techniques; and
alternatives, when assumptions of sensitive
tests are violated. These four points serve
to demonstrate that multivariate statistical
methods may, indeed, be applied to simulation
oubtput data, with the same degree of caution
one would exercise in univariate statistical
analysis,

The Experimental Nature of Simulation

There is no doubt that computer simulation
is an experiment. The only difference
between simulation and physical experimenta-
tion is that in simulation, the experiment is
conducted with a model of the real system
rather than with the real system itself.

Although the simulationist does not have
access to the real-world system, simulation
is in many ways a superior experimental
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technique. In simulation, exact replication
of experimental conditions is possible by
recording and reusing the same random

number streams. In simulation, the
experiment may be stopped and restarted at
the will of the experimenter with no loss of
data., Also, since the computer is a
frequently used tool for simulation, the
real time frame of the experiment may be
speeded up considerably, and the risk of
(human) measurement error is reduced.

In simulation, whether uni-response or multi-
response, the independence of successive
replications is maintained by using a
different, randomly selected seed value for
each replication of the simulation.

The Multivariate Central Limit Theorem

Many univariate statistical analyses of
simulation output data rely heavily on the
central limit theorem as a means of
satisfying the assumption of normality.
Similarly, multivariate analyses of simular
data will rely on the multivariate central
limit theorem.

Multivariate extensions of the central limit
theorem, found in Ito(13) and Puri and Sen
(28, p.24-25), state that vectors of sample
means follow a multivariate normal
digtribution if the sample size is
sufficiently large.

Robustness of Multivariate Statistical
Techniques

The robustness of a statistical test is a
measure of how well the test stands up under
violations of the assumptions with which it
was originally developed., Most multivariate
statistical tests are derived under the
agssumption of multivariate normality. Tests
of equality of two or more groups, such as
Hotelling's T® and MANOVA, have the
additional assumption that the populations
from which the groups were sampled share a
common variance-covariance matrix, In truth,
there is almost no set of data (simular or
otherwise) which meets these assumptions
perfectly.

There is a large body of work which
demonstrates that the univariate tests upon
which many multivariate tests are based are
extremely robust under violation of
assumptions (except, perhaps, for very small
and/or unequal sample sizes and for one-tail
tests), Harris(9, p.232) gives an intuitive
Justification for his conviction that
multivariate generalizations of univariate
tests will ultimately be shown bto exhibit
the same robustness to violations of
assumptions as do their older, univariate
counterparts,

Ito and Schull (14) have shown that, for
equal sample sizeg, the true significance
levels for the two-sample Hotelling's T2

test match the nominal levels quite well even
under Yiolation of the assumption of
homogeneity of variance-covariance matrices.
Mardia (19) reviewed several robustness
studies of the Hotelling's T® statistic, and

found pogitive results in all cases.

Other research (5,10,11,3,19) supports the
evidence that the T% statistics

(the two-sample more ‘than the one-sample
test) is quite robust against violation of
the distributional assumption and the
assumption of homoscedasticity.

An extensive robustness study of six

MANOVA procedures was done by Olson (26).

The procedures were compared with regard to
power to detect true differences when

various assumptions were violated. Olson
concluded that while the ‘Largest root" test
should be avoided, others have adequate power
to detect true differences.

Alternatives, When Assumptions of Sensitive
Tests are Violated

In any particular experiment, if there is
doubt as to the applicability of these tools
to the data at hand, some very useful tests
may be performed to see if the data satisfy
the assumptionsg in question. Andrews et al
(1), Mardia (19), and Popoviciu and Vaduva
(27) discuss procedures for determining
whether the assumption of multivariate
normality has been met. There are also tests
for the equality of several variance-
covariance matrices (9, p.85; 23, p.252).

If the conclusion is that an assumption was
not satisfied, then there are two paths open
to the experimenter: He may rely on the
robustness of the test and use it as is, or
he can use an alternate procedure, For
extreme departures from multinormality,
especially for tests which exhibit sensitivity
to extremely non-normal data , Andrews et al
(1) discuss the posgsibility of using data
transformations so that the data more nearly
satisfy the multivariate normality
requirement. While others (4, 19) have
attempted to simply revise the offended
statistic, more research is still needed in
this area.

CONCIUSION

It is hoped that the preceeding will prove to
be of some value to the simulation
practitioners and researchers who will use
multivariate statistical methods in the
analysis of simulation output data. There is
a great potential benefit awaiting
simulationists who use these techniques for
the analysis and interpretation of multiple
response simulation experiments.
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