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Abstract
This paper reports on the role of simulation

in the development of a certain statistical
ranking and selection procedure.

i. Introduction

In an article elsewhere in these
Proceedings, Goldsman (1884), we presented
an expository survey of procedures for
selecting that multinomial cell which has
the largest underlying probability. It is
shown in Section 1 of that paper that such
procedures are, in a sense, nonparametric.
Section 2 of the current paper gives a brief
summary of the pertinent notation and
terminology. Section 3 focuses on a
particular multinomial selection procedure;
viz., that of Bechhofer and Goldsman
(1984). HWe discuss the use of simulation in
the preparation of the tables necessary for
implementation of this selection procedure.
In Section 4, it is demonstrated that the
selection procedure in question can be used
in the simulation environment. Section 5
shows that the procedure can be augmented
somewhat by using certain simulation
techniques.

2. Preliminaries

The following summarizes the first two
sections of Goldsman (1984).

Consider k different competing simulated
systems, Hl,ﬂz,...,ﬂk. Suppose that we take

independent vector-observations of the form
(X1’X2""'Xk>’ X, being from T,,

i=i,...,k. For example, Xi could be the

(simulated) yearly profit achieved by the i-
th of k different inventory policies. Let
p; P{Xi is the ’most desirable’

of Xi»XyseeeaX,}s

where the term ’most desirable’ is defined
according to some c¢riterion of goodness
determined by the experimenter, For
instance, ’most desirable’ could be taken to
mean ’shortest down time® or ’highest
expected profit’. Order the Pi’S: p[I] <

Pl2] < .0 < PIk]" (Assume that we have no

& priori knowledge as to how the p[i]'s are

paired with the Hi’s.) Our goal is to find
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that “i associated with p[k], the largest of
the pi's.

In view of the arguments given in Section 1
of Goldsman (1984), we can examinas the
analogous probliem of finding that cell of a
k-nomial distribution which has the highest
underlying probability (we call this the
’best’ cell). .Suppose that we take
independent observations sequentially from a
k-nomial distribution with unknown cell
probabilities PysPgsesesPy He continue to

take observations until some stopping
criterion is met; one such stopping
criterion will be given in Section 3.

Denote Xy . as the number of observations
3

from cell i after t multinomial observations
(or ’stages’) have been taken, i=1,...,k;
t=1,2,... He refer to the x, ’s as the

it
’cell counts’. For each t, order the

xi,t’S: X[I],t < x[2],t < ... £ x[k],t'

Denote T as the stage at which sampling
terminates (T is a random variable for the
procedure to be presented in the next
section.) We choose as best that cell
corresponding to the largest count at the
termination of sampling, X[k],T (use

If the cell
is chosen, we say that

randomization if necessary).
corresponding to Pk

a correct selection (CS) has been made.

-
Now, denote Q% {ple Plk-1] < P[k]}- In

the procedure to be discussed in the next
section, the following so-called

indifference-zone probability reguirement
must hold:

P{cs|p = a,%} » PY, (PR)

L » 0 . .
where {P ,8 } is pre-specified by the

»
experimenter with 1 < 8 < «» and
17k < P <.

In the sequel, we will consider the
following configurations of p[i]’s:
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Plk] = 6 Pri] i=1,00.,k-1 (sc)

and

Prsp = 17k i=Then ke (EPC)

SC stands for sl/ippage configuration and EPC
stands for equal probability configuration.
For many multinomial selection proceduras,,
p{csip ¢ fig*} is minimized when p is in the

SC [see Goldsman (1984)]; in these cases,
the SC is called the least-favorable
configuration (LFC) and can be viewed as a
'worst case’ configuration (given that p ¢
2,%). The EPC is interesting in that we

would expect such a configuration to
maximize a multinomial procedure’s expected
sample size, E[T] (i.e., the expected number
of multinomial observations needed before
the termination criterion is met). A ’good”
multinomial procedure should (at least)
satisfy the PR and have ’low’ E[T|p ¢ sC]
and E[{T|p = EPC].

3. A seguential multinomial procedure

The following sequential procedurs is from
Bechhofer and Goldsman (i1984).

Procedure PBG:

. » »
1. Specify k, P , & .

2. Take multinomial observations one at a
time until either

2-A. ki? (170" [K1 T[], < (1-Py e or
=

2-B. the stage t = N wherse NBG is

BG’

) -
determined by k, P , & , and is to be found

»
in B&G’e tables for certain values of k, P ,
»

) .

Remarks:

1. This procedure is the closed version of
an open sequential procedure from Bechhofer,
Kiefer, and Sobel (1868). [By closed, we
mean that the number of multinomial
observations is bounded.]

2. NBG is chosen as the smallest upper bound
on the total number of observations such

that the PR is satisfied.

3. It is not known whether the SC is the LFC
for this procedure, but we so conjecture.
4. PBG compares favorably with other

multinomial procedures in terms of E[T].
See B&G (1984).

David Goldsman

Example:

-
Let k = 3, P = 0.75, 8 = 3. It turns out
[see Example 3.5.1 of Goldsman (1984)] that

Ngg = 5, with the resuiting P{cS|p = SC} =

0.757 and E[TPBG|E = SC] = 3.48.

Suppose sampling proceeds as follows:

Stage t Xt Xo.t X3, ¢
1 o] 0 1
2 1 o 1
3 1 0 2
4 1 c 3

Table 1 : An example of PBG

At stage t = 4, stopping criterion 2-A is
satisfied, so we terminate sampling and
select cell 3 as best. 7/

Al though this procedure is very simple to
imptement, construction of the necessary
tables was a formidable task. For ’small’

L
values of k and P , and for ’large’ values

of 6‘, we used an iterative method (loosely
based on a random walk argument) in order to
calculate (on a computer) exact values for
P{cs|p} and E[T|p]. CcCPU limitations forced
us to resort to use of Monte Carlo
simulation in order to obtain results for

"
>large’ k and P., and for & near 1.

Examples:

To illustrate results from our Monte Carlo
simulation, a small portion of the k = 10
tables from B&G (1984) is abstracted:

N Estimated Estimated Estimated
BG p{cs|sc} efT|sc] E[T|EPC]
[ » T
a1 .7539 18.73 24.46
(.0014) (.08) {(.13)
[ ] ji
54 .7535 32.03 42.36
{.0012) {(.13) (.23)
B ] 3 1
56 . 7520 55.16 72.91
(.0011) (.24) {(.41)
44 .7510% 132.38% 175. 45"
(.0007) (.45) (1.07)

Table 2: Results for PBG for k = 10

based on (1=4000, ==12000, #=20000)
independent replications of feg
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He now give an elementary augmentation of
PBG; viz., stop sampling when the cell in

second place only has a chance to tis.

Procedure PBGZ:

. 3 L]
1. Specify k, P , © .

2. Take observations until
k-1 . % -Xr.
2-a. § (10" KDt Bilat o (op™yp® or

i=1

2-B. t = NBG2 = NBG’ where NBG is from PBG

or

2-Ce X)L 7% k=11, = Nea2mtryy

Remarks:

1. Clearly, E[T

A

] < elv, .
PBGZ PBG
2. It can be shown that P{CS|PBG2} =
P{CSIPBG}. I.e., no P{CS} is lost between

the two procedures.

3. Tables for PBG2 are currently being

prepared. Concerning the P{CS}, see the
above remark.

Example:

Again, Tet k = 3, P‘ = 0.75, 9‘ = 3. Then

Ngge = 5 and p{cs|p = sc} = 0.757 as

before. Now, E[T, |p = SC] = 3.24 <
BG2

3.48 = ET lp = scl.
Pas 17

4. An example in the simulation environment

He are now interested in the more general
problem of determining which of k arbitrary
populations "1”"’“k’ is the ’best.’

Suppose Xi is an independent observation
from "i’ i=t,...,k. Recall that we can
correspond each of the k Hi's with a cell of

a k-nomial distribution with cell
probabilities p,,...,p s where p. = P{Xi is

the *most desirable’ of X],...,XK}; so the

multinomial procedures PBG and P are

BG2
?onparametric. This fact is of tremendous
importance for simulators since the

underlying distributions of the Ui’s (i.e.,

k simulated systems) are frequently unknown.

Suppose that we wish to choose that one of k
different {s,S) inventory policies which
will have the highest probability of
yielding the maximum profit for a small
company. Herae, profit is taken to be the
criterion of desirability. It is assumed
that the financial affairs of the company
are complicated enough such that an analytic
solution of this problem is not possible;

we therefore resort to the use of simulation
and multinomial selection techniques.

For the sake of simplicity, suppose that

o »
k=3, P =0.75, and ©& =3; so0 we must choose
among thrae (s,S) policies. Further, it is
dasired that the usual indifference-zone PR

holds: P{csle"'p[k_]l < Prgt 2 P, where p,

is the probability that the i-th policy
yields the highest profit in a given k-
vector observation. He will use procedure

PBG2'

HWe simulate each of the three (s,S) policies
(with different pseudo-random number
sequences) to obtain vector observations

Yir¥po--- Let yj,t = the profit from policy

i on the t-th simulation run,

Yy = (y1,t’y2,t’y3,t)’ t=1,...,T, where T is

the stage of sampling at which Pg.,

terminates. After the t-th stage of

sampling is complieted, we identify the

policy which yields the highest profit among

(y Y sy Y. Randomization is used to
1,t772,t773, ¢t

break ties. HKWe increment the count in the
corresponding multinomial cell by one.

Example:

If = (356,422,297), then the highest
¥, g

profit (for this vector observation) is
raal ized by “2' Thus, the count x. =

1
(xy yo%p, 15%g,1) = (0:1,0).,

We take 3-vector simulated observations

until PBGZ calls for the termination of

sampling. Recall from Section 3 that Pg.,

terminates when:

) (1/9")x[“]’t_x“]’t < (1-p )"

2. t =N



In the table below, we continue the
example. Tha first column gives the
sampling stage t - i.e., the number of 3-
vactor observations which have besn taken.
In the next three columns, the 3-vectors of
simulated data are given. These are
followed by the corresponding multinomial

’
cel] xi,t s.
t Yi,t Yoot Ya.t] X1,t X2, %3t
1 3586 422 297 1] 1 0
2 411 378 314 1 i 0
3 374 393 380 1 2 o
4 368 374 378 1 2 1

Table 3: Vector-observations and
corresponding cell counts

At stage t = 4, PBGZ calls for procedure
termination since x[k],t—x[k—1],t = NBGZ-

He choose policy two as ’best,’ since that
is the policy corresponding to x[3] T s/
>

t.

S. Augmentations using simulation

5.1 Pseudo-observations

We discuss an augmentation of PBG2 that

eliminates populations which seem to be
’inferior.’ This augmentation takes
advantage of the possibility that in the
course of sampling, some of the Hi’s will

have no chance of ’winning’ (being chosen as
'best’).

For instance, in the example of Section 4,

xg = (%) g2%y 32%3 3) = (1,2,0).

Claim: Given that x, = (1,2,0), it is

impossible for W, to win (in this exampie).

3

Case 1: If Xy

T, and T, can win {since Nogo = 5).

Proof: = (2,2,0), then only

Case 2: If 54

terminates and ﬂ2

criterion 2-A of Py, holds).

= (1,3,0), then sampling

wins (since stopping

Case 3: If X4

[k],t™™[k-1],¢

= {1,2,1), then H2 wins
(since x = NBGZ_t)'//

Thus, in this example, it is pointless to
sample from T, given that xg = (1,2,0).

With this example in mind, consider the

following augmented procedure, P,, which no

longer takes observations from T Suppose

3°
that before the next vector observation is
taken, a U(D,1) probability die is rolled.
Let the outcome of the roll be 0 ¢ u £ 1.
Since the PR must be satisfied, assume that

(P[1]+P[2]*P[a]) = (P+P:07P), where p =

1/(9!#2). That is, the underlying
configuration of p;’s is the SC (the

conjectured LFC). If u < p < 1, award a

’success’ to multinomial cell 3 (i.e.,

increment cell 3’s count by one: X3 4
£

Xy g*1) without actually taking vector
3

observation Yg- [He have generously given

W, a *free success’. This non-observation

3
is called a pseudo-observation (or
pseudo-success).] 1f u > p, define Yy =

(vq,4792,4)

from H] and H2.

count of the cell corresponding to the ’more
desirable® of the two observations. Take
cbservations in this manner until any of the
stopping criteria from PBG2 are met (where

the x.
"

In this case, we only sample

Increment as usual the

¢ & are defined as above).

With the example s5till in mind, let B be the
event that {ue are using procedure PBGZ’ the

underlying configuration of the pi’s is the
SC, and x,=(1,2,0)}.
except that P

Define C similarly

is to be replaced by P,.

BG2
ciaim: P{cs|B} = p{cs|c}.
Proof: Since we operate in the SC, Py = P
»
or € p.

Case 1: If Py = O-p, then cell 3 is the

=
correct cell (since 8 > 1). However, it is

»
clear that P{OS|p3=8 p, B} =

-
P{CS|p3=9 p, €} = 0. ,

Case 2: Suppose p, = p. Then (p],pz) =

- »
(p,0 p) or (8 p,p). Assume the former
subcase. A similar argument will apply for

the latter. Consider P, and a given 3-

vector observation. Then ﬂ3 is awarded a

pseudo-success with probability p. Further,

m is awarded a success with probability:

[P{IT3 will not get the success} x P{H]

and T

] 2 are

will get the success | only T

under consideration}] =
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»
(i-p) x p/(p+8 p) = p.
Similarly, P{T, will get the success} =
2 g

»
8 p. But these success probabilities are
exactly the same as those from PBGZ' Since

the termination criteria for both procedures
are also identical, we have the result. ’7

Goldsman and Schruben (1984) consider a more
general version of P_:

Procedure PSIM:

»
1. Specify k, P ,8 . For t=1,2,...

2. Let I, = {||x[k],t-xi’t 2 Npgo-t} (This
is the set of Hi’s that no longer have a

chance to win.)

3. For each iecl allocate an interval of

t’
»
length p of [0,1], where p = 1/{(k-1+8 ).

4. Roll a U(0,1) random number, u.

5. If u falls in an interval allocated for
some jslt, increment the corresponding xJ t
»

by one (i.e., award a pseudo-success to
"J)' Otherwise, take actual observations

from all T, ’s such that is{l,...,k}\It.

Increment by one the x5 corrasponding to
»

t
the *most desirable’ observation.

6. Terminate the procedure {(with the usual
decision rule) if any of the termination

criteria for PBGz are satisfied. /7

Remarks:

1. G&S prove that P{CS[PBGZ, p = SC} =
P{CSIPSIM, p = SC}.

2. Clearly, E[T, |p =EPC] < E[T, |p =
SIM BG2

EPC], where T, is the number of stages (in

which actual? observations are taken) unti)
termination. It seems likely that this
relationship alsoc holds when p = SC, but
this has not yet been proven.

3. Tables for P

sy 2re currently bsing

prepared.
4. The trick of taking pseudo-observations

is particularly suited for the simulation
environment.

Example:

Then
CS'E = SC} = 0.757 as before, and

A?ain, let k=3, P =0.75, and @ =3.
P

eE[t, |p = sc] = 3z.12.

SIM

144

5.2 Correlation induction

Frequently, it is possible for the simulator
to artificially induce (positive)
correlation among the ﬂi’s. For instance,

the simple technique of common random

numbers can be used (when applicable).
complicated methods can also be
implemented. It stands to reason that as
the correlation among the populations
increases, it becomes easier for the
experimenter to distinguish which of the
populations is the ’best.’

More

Consider the aforementioned selection

procedures. Obviously, an increase in e“
facilitates the distinction of the ’best’
multinomial cell. The following crude
example illustrates how positive correlation

. . . - -
induction can result in increased © .

Example:

Suppose that k=2 and that Xi is distributed
normally with unknown mean My and known,
common variance 02, i=1,2. If one
observation is larger than another, the
first observation is taken to be the more
desirable. Define Py E P(X‘ > X2) and p, =
1 - Py-
let Py = 9p and P, = P where 6 =

(=p)7p > 1.
Corr(Xl,Xz)

Suppose that My > Hy3 SO we can

Finally, define p
> O.

m

Then
P, = P(X]>X2) = P(X1-X2 > 0)

P{ [xl—xz_(u]-uz)] rw > ‘(Hl‘uz)/‘*’},

where ® = J(202(1-p))

1-2(-(u-uy)70) = 2((u,-u,)7e),
where #(.) is the N{(0,1) cdf

= 6 p, sa = 1~-p.
PP Y> P

so e, = (1-p)/p = 2(n)/(1-2(n)),
where n = (u]—uz)/m.

Hence,
8,780 = [2(n)/e(n)Ix[(1-2(n"))/7(1-8(n))],
where n°> = nv{1-p).

This quantity is obvi Ty > 13 .
q ¥y viously 1 Bp > 90 yy,
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Summary

In this article, we have shown that
multinomial selection procedures can be
adapted for use in the simulation
environment as nonparametric selection
procedures. It was also demonstrated that
simulation plays an important role in the
development and implementation of such
procedures. It is hoped that the
experimenter will make use of these
procedures when they are applicable to the
problem at hand.
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