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INTRODUCTION

For the past two decades, much of the attention in the
statistical methodology of computer simulation has
been motivated by and directed toward what is
essentially a single goal: To construct a valid
confidence interval for a steady-state parameter of a
stochastic process by means of simulation. During
this time, a number of approaches have been developed
in an attempt to meet this goal, and the purpose of
this two-session forum is to gather several of these
ideas together for exposition and discussion. Each
participant in this forum is actively involved in
research in this area, and has agreed to present or
co-present one of six methods: Replication, batch
means, time series, spectral methods, regenerative
methods, and standardized time series. The order
chosen represents an attempt to follow the
chairperson's impression of the chronology of
development.

Several definitions of the basic problem are possible
(and are often equivalent), perhaps the most direct of
which is as follows. Let {X., i ¢ {1, 2, ...}} be a
discrete~time stochastic proéess and assume that p =
lim E(Xi) exists. The goal is to construct a

l-.w

100(1 - a)% confidence interval for g from the
simulation output, i.e. to form an interval [L, U]
where L and U are statistics observable from the
simulation output, such that P{L < p < U} =1 -a,

Alternatively, we may wish to observe a continuous-—

time process {X_, t ¢ [0, =)} and construct a

confidence interval for ¢ = lim E(Xt). A different
-

approach is to consider the time-dependent

distribution functions F,(x) = P{X, < x} (or F_(x) in

the continuous-time case}, and assume that lim Fi(x) =

i+
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F(x) where F(x) is the distribution function of some
random variable X, called the steady-state random
variable; the goal is to form a confidence interval
for E(X) or (more generally) E[g(X)] where g is a
measurable function and may be chosen, for example, to
define moments of X or indicate whether X falls in
some interval.

In the remainder of this paper, each participant

presents a short exposition and discussion of the
method he has been asked to represent.

REPLICATION —- Averill M. Law

Steady-state simulations are often appropriate when
one wants to determine the "long-run" behavior of
manufacturing systems, computer systems, etc. The
method of replication/deletion for steady-state
analysis proceeds by making independent replications
of the simulation, with the initial portion of each
run not actually being used in the analysis. We
discuss graphical (see Welch [1983]) and statistical
techniques (see Schruben [1982]) for deciding on the
length of the initial data deletion,

The method of replication/deletion is important
because it is very widely used in practice, is
similar to the approach used for terminating
simulations, and easily accommodates multiple
measures of performance.
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BATCH MEANS -- Bruce W. Schmeiser

Consider a steady-state stochastic process {x} having

mean (£ and finite second moment. Tge classical batch

means confidence interval for p is XiH, x! where H, k
14 14

k

2 =2 =2

= = - k~1). Th

ta/z,k-lsk/ﬁ and S (izlxl kX%)/(k-1) e

batch means Rl, Rt ever may be averages of

adjacent discfete”observations (such as customer wait
im

times), Xi = ( 3

n
X,)/m with X =( 3, xj)/n; the

j=(i-1)m+1 3 3=1
integral of a continuous—~time process (such as number
it
in the system), X, = ( f X(s) ds)/t with X =
i .
(i-Lt

T
(j'X(s) ds)/T; or a count process average (such as
0

number of blocked customers), X, = (N(it)-N((i-1)t))/t
with X = N(T)/T. The number of batches is k = jn/m|
in the first case and k = |T/t} in the second and
third cases.

Theoretical Foundation

We discuss the classical batch means method assuming
the first case of n discrete observations. Analogous
statements can be made for the continuous cases almost
directly by replacing summations with integrations.

For a constant sample size n and assuming steady
state, ¥ is an unbiased estimator for p and V{X} =
n-1 +h
(Ro + 23 (l—(i/n))Ri)/n, where Ri is the i™" lag
i=1
covariance between‘xj and Xj+i‘
We say the confidence interval Z+H is_valid if
p{|u-X| < H, } = 1-a, which is trué if X, Xyr ennr
X _are indepéndent and identically normal}y
distributed (NIID). (For reassurance that NIID
conditions occur as n - » and m -~ », See Brillinger
[1973]). When the batch size m is large enough to
provide ap essentially NIID sequegce of batch means,
then E{s, “/k} = v{X} and Cov{i,sk } = 0, resulting in
a valid interval.

Practical Implementation Issues

The key issue for implementation is the selection of
the batch size m, or equivalently for fixed n the
number of batches k, to provide a valid confidence
interval procedure with good statistical properties.
The usual good properties are that E{H k}' V{Ha 1,
Cvil, J, and P{|u -R| < H, } for p FiFare smatk.
since'¥he magnituad of the’t¥as |viR5-£{s, “/k}| is
increasing in k while the variance V{s /E} is
decreasing in k, the selection is not gasy. Validity
of the procedure calls for a small number of batches
and the other properties call for a large number of
‘batches.

Although these other properties are the reasonable
measure of performance for confidence interval
procedures, they cannot be estimated by a
practitioner, so typically batch means algorithms
choose k (in a variety of ways) based on statistical
tests of independence of the batch means (Fishman
[1978], Law and Carson [1979], Mechanic and McKay
[1966], and Schriber and Zndrews [19791).

For discussion purposes, I will take the following
position:

function of neithér a nor k.

1. Based on familiarity with the actual system or
with the simulation model during debugging and
validation, practitioners usually have a good idea
of the number of observations, n,, or the length
of time, t., reguired for approximate
independence. Determining n. or t typically
involves answering the question "Does knowing the
state of the system tell you anything about the
state of the system n. customers (t, time units)
later?" for various potential values of these
variables.

2. Using Ehe classical b@tch means algorithm with k =

(n/no) or k = (T/t.)" with £ a constant somewhere
between 0.5 and 1.0 results in almost valid
confidence intervals with reasonable statistical
properties.

Item 1 is simply my opinion. I will quickly grant

‘that there are some practitioners who cannot, or will

not, provide reasonable values for n. or t.. Also
note that an exception in which the simulagion modeler
usually has very poor notions about n_ and t. is
simple queueing systems with heavy traffic, gut then
almost no one has observed such systems.

Item 2 could take many forms, and I certainly don't
know the best value for £ in any sense, but a value
such as £ = 0.5 (which is easy to calculate) causes
many batches to be used only in a very conservative
manner, which is consistent with the following point:

Ten batches is enough for most purposes and
thirty is almost as good as k = n.

We support this point in the remainder of this section
following arguments in Schmeiser (1982),

Consider the coefficient of variation (CV) and mean of
confidence interval half width for k = 2, 10, 30, and
121 batches (or replications) and levels of
significance a = 0.10 and 0.0l. Assuming batch sizes
of n/l21 are large enough to provide NIID means, the
following results from Schmeiser (1982, Table 1)
apply:

k Vit \} Effy 10,k Effg 0p,i0
2 0.76 5.04 50.8
10 0.24 1.78 " 3.16
30 0.13 1.68 2.73
121 0.06 1.65 2.61
where H is the half width of a confidence interval

with legéE of significance a ang ?ased on k batches.
The units of E{Ha y} are (V{X})“ 7, which is a
Therefore, the results
in the table are valid for any number of observations
n, underlying correlation structure, and variance.

Clearly k = 121 is better than k = 2, 10, or 30, since
the coefficient of variation and expected half width
are less., However the difference between k = 30 and k
= 121 is not great and is incurred at some risk. For
batch means the risk is that the k = 121 batch means
will be less normal and independent than k = 2, 10, or
30 batch means, resulting in poorer probability of
covering the mean. For replications the risk is that
k = 121 replications will be less normal and more
biased (due to the initial transient) than k = 2, 10,
or 30 replication means. Since similar behavior
occurs in terms of coverage probabilities, and since
additional batches require additional memory and
computation, there seems little reason for k to be
greater than 30.
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On the other hand, using fewer than k = 10 batch or
replication means results in substantially shorter
confidence intervals than when k < 10, again under the
assumptions of normality and independence. Thus,
using a sample size n large enough to allow batches or
replications of size n/10 to be almost normal and
independent has a reward beyond the reduction of V{i}.

Three points should be noted:

1. Increasing k while keeping the batch or
replication length constant reduces vi{x}
approximately inversely with k since the number of
observations is then proportional to k. The
eﬁpgcted half width then decreases inversely with
k™ "7, Schmeiser (1982) does not conclude
otherwise, since only a fixed value of n is
considered, although misinterpretation of the
paper Seems common,

2. The “"fixed value of n" may arise in either a fixed
or sequential batching algorithm. In the context
of a sequential algorithm, the result is that when
the algorithm is ready to terminate and calculate
the confidence interval to be returned to the
user, using more than 30 batches adds little
improvement.

3. As noted in Law and Carson (1979), hundreds of
batches may be necessary to determine adequately
the degree of non-normality and dependence.
However, after determining that a confidence
interval is to be calculated, then (as in point 2
above) no more than about 30 batch means should be
used.

Future Directions

The future of batch means in practice is to continue
being the most used method other than independent
replications for statistically analyzing simulation
output, because batch means requires few assumptions,
is easy to understand and is easy to implement.
Inclusion in languages and packages remains necessary
for widespread application of any output analysis
method.

The future of batch means in research follows several
directions, four of which are briefly mentioned here.

Seila (1984) considers batching discrete observations
using equal time intervals, which results in a ratio
estimator.

Bischak and Kelton (1984) are examining deletion of
observations between batches to decrease batch mean
dependence, which is thought to be more crucial than
normality, which such a procedure hinders. They find
" .. the best coverage resulted from the strategy of
deleting a large percentage of observations from each
of a small number of batches, but the smallest half-
length for a given run length resulted f£rom batching
observations into many small batches and averaging
without deleting data." These conclusions are
consistent with the discussion in the previous
‘section,

Meketon (1980) studied the variance time curve V(t) =
1im v{zZ(s+t) - Z(s)}, where 2(s) is the cumulative
Ss—+00

(sum or integral) process observed at time 8.y v(t) is
valuable in our context because V{X} = V(T)/T°, where
¥ = Z(T)/T and an estimate of V(t) is the sample
variance time curve

25

A T-t 2
V() = § (z(s+t) - 2(s) - tz(T)/T)° ds)/ (T - t),
0

which is an estimator based on overlapping batch
means.

Kang (1984) considered properties of batch means when
the underlying process is autoregressive moving
average. His analytic and numerical procedures
provide insight into the structure of batch means in a
wide (although certainly not all-inclusive) setting.
In addition Monte Carlo studies can be performed
efficiently since the batch means can be generated
directly rather than by aggregating the underlying
process.
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TIME SERIES -- Richard W. Andrews

The objective of this report is to describe briefly
the Autoregressive Moving-Average (ARMA) confidence
interval for the mean of a stationary stochastic
process. A complete description of this methodology
is contained in Schriber and Andrews (1984, referred
to as S&A). The report will consist of answers to
five questions. The five questions are:

1. What are the assumptions of the methodology?
2. What settings must be made by the user?
3. Is the methcdology robust to the assumptions?

4. Does the methodology provide the type of answer
desired?

5. How well does the methodology perform?

Before answering these five questions a few general
comments concerning confidence intervals is
appropriate. The concept of a confidence interval has
as its origin the seminal paper of Neyman (1934).
Neyman's approach is based on the foundations of
statistical inference referred to as sampling theory.
Sampling theory evaluates an inference procedure by
how well it does in repeated samples.

In the simulation output analysis literature, the
presentation of a new confidence interval methodology
usually includes an empirical study. Bs part of the
empirical study the coverage of the confidence
interval method is reported. That coverage is found
by using repeated samples; therefore the sampling
theory approach is used. The likelihood principle
provides an alternative foundation from which to view
a confidence interval. In the closing section on
Future Work the likelihcod principle will be
discussed. The ensuing answers to the five questions
assume that only the sampling theory foundation of
statistical inference is appropriate.

Assumptions

The output random variable, X, is assumed to be
described by a stationary ARMA model:

L P *

O * ¢ " 016y " 04t

€ ~ N(0,02), for all t

02 if t =5

E(e ¢ ) =
ts 0 ift#s
Cov(ft, Xs) =0 4if t > s,

For this model to be stationary all roots (solutions
for B) of the equation

_ _ 2 _ eee _ g P _
1 <1>lB q{>23 qSPB =0

must lie outside the unit circle in the complex plane.

The normality assumption for the shock term, €¢_, is
necessary in order to test hypotheses concerning the
model parameters and in order to provide a
distribution for the construction of a confidence
interval. A further comment concerning the normality

assumption will be given in the section on Robustness.

The choice of an ARMA model for an output random
variable is compelling because of the following
theorem.

Predictive Decomposition Theorem (Wold 1954)

Any stationary stochastic process, Xt’ with finite
variance, can be expressed as

(a) the two components @t and Wt are uncorrelated,

(b) ¢t is purely deterministic and ¥ is purely
ind?terministic (see Cox and MilEer [1965 p.
2870,

(c) the purely deterministic component can be
linearly predicted on the basis of past
observations, and

(d) the purely indeterministic component allows a
representation of the form

W = € O €yt O p t

with Zetz < ® and Cov( € xs) =0 if t > s.

This theorem is the foundation for the extensive use
of the ARMA model; however it does not give any limits
to the values of p and q. The procedures for
determining the values for p and q are discussed in
the Settings section. The procedures are based on the
principle of parsimony. It is stated in Box and
Jenkins (1976 p. 17) that "It is important, in
practice, that we employ the smallest possible number
of parameters for adequate representation.”
Furthermore, practice has shown that ARMA models with
small values of p and q (< 3) adequately model
observed processes.

The output random variable is assumed to be observed
at discrete equally spaced intervals of time. With
simulation output this is not a restrictive assumption
since the process can be observed whenever desired.
Using the ARMA model a confidence interval will be
constructed for the process mean, given by

P o.-1
H= 9,02 ~i§l¢i> .

The ARMA procedure for constructing a confidence
interval for 4 is (for a full discussion see S&A):

i. The values of p and q are determined.

ii. The paramejers (¢ﬁj ¢2, ceer @Y (B0 By eeey
g.), and 0° are eStimated by uging the
cgnditional likelihood (see Box and Jenkins [1976
pp. 209-210]).

iii. Hypotheses tests determine if the candidate model
adequately describes the data.

iv. The variance of the sample mean is estimated by
using the ARMR spectral density function with its
parameters set to time domain estimated values.

V. The normality assumption provides a t
distribution for the confidence interval
statistic.
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Settings

The three settings that will be discussed are:
1. the number of observations, n;

2. the range of p and q; and

3. the significance levels for the hypothesis tests.

1. For any fixed sample size confidence interval
procedure, the amount of data as measured by the
sample size must be specified. The ARMA confidence
interval methodology uses the raw data in two ways.
First, the sample autocorrelations are formed and used
in identifying the order (p,q). Second, in the2
estimation stage the likelihood for 9, 9: and 07 i
evaluated.

The ARMA process has been used extensively with
econometric data where observations are much more
difficult to obtain than simulated observations. In
many cases 50 observations have been used to identify
and estimate an ARMA model. In S&A the number of
‘observations range from 100 to 400 and provide
‘excellent results for tailor made processes.

2, In the identification stage the values of p and g
must be set. One method of determining the values of
p and q is by inspecting the autocorrelation function
(ACF) and the partial autocorrelation function (PACF).
.In doing so the range of p and g is limited by the
number of lags included in the ACF and PACF.

There are also various automatic identification
procedures available. In S&A a procedure due to Gray,
Kelly, and McIntire (1978) is used. All combinations
of p and g are considered for p = 1, 2, 3 and q =

1, 2, 3. Bs reported in S&A the automatic
igentification procedure correctly identifies both p
and g in 74% of the replications. A higher percent of
correct identifications were observed with the largest
(n = 400) sample size.

3. In the diagnostic stage each of the coefficients
of the candidate model is tested for significance. In
addition, an overall test for lack of f£it (Ljung and
Box [1978]) is performed. In S&A the significance
level is set at .05 for all tests. If the diagnostic
tests are ignored and the estimated models are used,
the coverage of the resulting confidence intervals
does not change significantly.

Robustness

Because of the generality of Wold's theorem, the only
two restrictive assumptions are the limits on p and q
and the normality of the shock terms. The ARMA
confidence interval methodology has been tested on
only one queuing process, an M/M/1l queue. The output
random variable was the number in system. The results
are: 1) the restriction on the size of p and q is not
a problem because the test statistic emphatically
identified values for p and ¢ well within the range
chosen, and 2) a correlation between the estimator of
p and the standard error of the estimator shows that
the normality assumption is violated.

Answer

One of the advantages of the ARMA confidence interval
methodology is that the final answer provides more
than an interval estimate of pu. An estimated model is
available as part of the final answer. That model can
be used to make additional inferences. 1In fact, it

sometimes can be used as a surrogate for the simulated
process.

Performance

In S&A the BRMA methodology was used to obtain 2800
confidence intervals. Most of the processes used to
generate the observations were tailor made (Schriber
and Andrews [1981]) ARMA processes. The methodology
worked well on tailor made processes. The coverage
was close to nominal and the properties of the half-
width (relative mean and standard deviation) were
appropriate. On the limited runs made with output
from a simulated queune the results were not as
favorable. The coverage for a 95% confidence interval
ranged from 71% at n = 100 to 81% at n = 400.

Future Research

It is my belief that further confidence interval
developments under the foundations of sampling theory
is not the fruitful direction for research. The
likelihood principle states that for any inference
about a parameter, all of the information from the
sample data is contained in the likelihood function
(Barnett [1973 pp. 196-197]). The idea of repeated
samples is irrelevant. The samples we did not observe
are not important. The sample we have in hand is
important. Furthermore, the likelihood foundation
predates Neyman's sampling theory approach (for an
interesting discussion see Good [1983 pp. 34-361).

One of the important aspects of using the ARMA model
is that the likelihood is known. For other confidence
interval methodologies it is not clear what the
likelihood is and it seems that some methods are
justified only for repeated samples. Comparisons of
confidence interval methodologies should be
comparisons of likelihocds, not comparisons of
coverage. Therefore, an important avenue for future
research with the ARMA model is an investigation of
the likelihood in terms of u.
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SPECTRAL METHODS --— Peter D. Welch

In the references cited below a spectral method for
confidence interval generation for steady-state
simulations is proposed, developed and analyzed. In
this panel discussion the speaker will discuss the
advantages and disadvantages of this method, compare
it as much as possible with alternatives, and suggest
topics for additional research.
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REGENERATIVE METHODS —--
Peter W, Glynn and Donald L. Iglehart

Introduction

The regenerative method is a mathematically rigorous
procedure for obtaining confidence intervals for
steady state parameters. In order to properly assess
the regenerative method, it is necessary to discuss
those characteristics that make a confidence interval
"good."

Qualitative Structure of Confidence Intervals

Given a parameter p, a confidence interval for u is
generally based on a limit theorem of the form

(rt - #)/Vt =1L (L
as t -o, where L is a finite random variable (r.v.)

with a continuous distribution function; the parameter
t measures the simulation effort reguired to obtain ry

and v_. The processes r_ and v_ will be called a
point estimate (for p) and a normalizing process,
respectively; we shall always assume v, is positive.
To obtain an approximate 100(1 - a)% confidence
interval for p, select zl, z2 such that

Plz; <L <z} =1-a
Then, for large t,

[rt =2,V L, - zlvt] (2)

contains g with probability 1 - a. The following
hierarchy of properties largely determines the quality
of the confidence interval.

a.) consistency of r_: If r. is not consistent, v
does not tend to zero, and confidence interval
half-length does not shrink to Zero.

b.) asymptotic mean square error of r.:
ry is asymptotically normal.
a non-negative o such that

/2

In general,
Then, there exists

t (rt - [) = oN(0,1). (3)
Squaring and taking expeitations through (3), we
observe that MSE(r ) ~ 0°/t. Consequently, one

wants to choose rt so that 0" is as small as
possible.

c.) expected half-width of confidence interval: By
(2), the half-width of the confidence interval is
(z, - z,)Ev_. 1In general, when as totic
no%mali%y hglds, (22 - zl)Ev ~ v/l‘éng for some
v; the goal is to minimiZe v.

d.) Variability of half-width of confidence interval:
The variaace of the half-width is given by
(z, - z,) var v_. Unger quite general
cofiditidns, (z. -~ zl) var v~ a/t; the goal is
to minimize a.

e.) Approximation error: Lét
Ay = |Plzy < (r-mw/v < 2.} - Plzy S L <z}
be the coverage error for the confidence
interval., Berry-Esseen cog7iderations suggest
that, in general, At~ B/t ; minimization ofB

is desirable,

The Regenerative Method

Loosely speaking, a regenerative process is one which
looks like a sequence of independent and identically
distributed (i.i.d.) r.v.'s, when viewed on an
appropriate random time scale. More precisely, X =
{X(t): t > 0} is a regenerative process with
regeneration times 0 = T, < T. < *** if {r , X(s):

T, , SS<T } is a sequence Of i.i.d. random
e&ements, where r, = T, - T, .. For examples of such.
processes, see Crane and Lemoine (1977). Given a
real-valued function defined on the state space of X,

. t
r, =t fE(X(s))ds—~r a.s. (4)
0
under mild assumptions on X and £. The goal of a
steady state simulation is to produce confidence
intervals for r.

T,
<t} and ¥, = frEx(s))Has,

T,

i~1

If N(t) = max{k > O: T,

then

r, = YN(t)/rN(t) (5)
where ¥ _, 7_ are the sample means of the Y,'s and
r.'s, respectively. Regenerative structurg ensures
that {(¢,,r)s i > 1} is a sequence of i.i.3. random
vectors,lsolthat (4) and (5) together suggest that r =
EYl/E:l. Then, by (5),

R R TORATT

vhere Z, = Yk - rr. has mean zero. Standard central
limit tgeory arguments prove that

tl/z(rt - r) = aN(0,1)
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where 0 = @ (Zl)/Er,, if E(Yl + ii ) <,

2, =
F o &.s. =
aﬁgthermore, N 0 &.5., whefe M, sN(t) / )
2 -1 2 s 2
s, = (n-1) .E (Yi - (Yn/rn)fi) .
i=1 .

We conclude that

(x, ~ 1) /v, = N(O,1)
where v, = |7 _|/¥T is the normalizing process for the

regenerative method. The qualitative structure of the
regenerative confidence interval can be summarized as
follows:

¢ is consistent for r

b.) MSE(r,)~ 0%(z) / (Ert) (note that
any confidence interva} method using the sample
mean r, as a point estimate will have the same
MSE)

a.) r

c.) (z2 -z )Evtaf 2z(a) o(Z.)AEr.t ,
whére zka) Solves P{N(O,l) < z%a)} =1-a/2

d.) t(z2 -z %2 var v£—~—9 (in fact,
(z.,"~ zl} var v _'~a /t; see Glynn and Iglehart
[1584])

e.) [Bis currently unknown

Note that 8 is a reflection of approximation error due
to the bias of r _, and skewness/kurtosis effects. It
is to be anticipated that the i.i.d. structure
associated with the regenerative viewpoint can be used
to reduce these errors. For example, Meketon and
Heidelberger (1982) developed a point estimate which
is asymptotically eguivalent to r,_, but which
significantly reduces bias. Also, Glynn (1982)
proposed a procedure for reducing 8 in the closely
related problem of estimating r on the time scale of
regenerative cycles.

As discussed above, the regenerative method is a
theoretically sound procedure for the steady state
confidence interval problem. The main advantages of
the method are:

i) iEs good asympEotic properties (for example,
0%(v, ) = 0(1/t”) indicates the accurate
"variance constant estimation" possible with the
regenerative method)

ii.) the ability to make small-sample corrections, to
reduce approximation error

iii.) the i.i.d. structure allows one to develop
procedures for a host of other estimation
problems (e.g. comparison of stochastic systems;
see Heidelberger and Iglehart [1979])

iv.) no prior parameters are needed as input for the
method, other than run length

The main disadvantages of the method are:

i) the requirement to identify regeneration times
means that the method is hard to "black box"

ii.) the method may behave unsatisfactorily if the
expected time between regenerations is long

and Prospects 249

Acknowledgment

Preparation of this paper was supported by the U.S.
Army Research Office under Contract DAAG29-84-K-0030
and the National Science Foundation under Grant NSF
MCS 8203483,

References

Crane, M.A. and A.J. Lemoine. °An Introduction to the
Regenerative Method for simulation Analysis.
(Lecture Notes in Control and Information Sciences.)
Springer-Verlag, New York, 1977.

Glynn, P.W., "Asymptotic Theory for Nonparametric
Confidence Intervals,” Technical Report 19, Dept. of
Operations Research, Stanford University, 1982.

Glynn, P.W. and D.L. Iglehart, "The Joint Limit
Distribution of the Sample Mean and Regenerative
Variance Estimator," forthcoming technical report,
Dept. of Operations Research, Stanford University.

Heidelberger, P. and D.L. Iglehart, "Comparing
Stochastic Systems using Regenerative Simulations

with Common Random Numbers," Adv. Appl. Prob., 11,
804-819, 1979.

Meketon, M.S. and P. Heidelberger, "A Renewal
Theoretic Approach to Bias Reduction in Regenerative
Simulations," Management Science, 26, 173-181, 1982.

STANDARDIZED TIME SERIES —- Lee W. Schruben

Standardizing a time series is conceptually the same
as classical standardization of a scalar statistic.
Here the entire series is standardized by scaling the
partial sums of deviations about the sample mean.
This series, under some mild assumptions, will
converge in distribution to a Brownian bridge
stochastic process. The theoretical properties of
this limiting process are used for statistical
inference in the same way that normal or t random
variables are used in scalar inference. This permits
the testing of hypotheses and the construction of
confidence intervals for parameters of the original
output series. This technique appears to be a
promising approach to many of the problems in
simulation output analysis. Papers on this topic are
given below.
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