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Identification of significant factors has traditionally been a costly

process.

Initial results indicate that the use of spectral methods

can reduce the number of simulation runs required to obtain the

desired information.

Two spectral methods will be compared to the
traditional method of testing for factor significance.

The paper

introduces the concepts needed for the spectral methods, and the
empirical results will be presented orally at the conference.

System identification is an area of
simulation analysis which should be of
particular interest to practitioners. It
refers to the task of trying to identify
which factors in a systems model have a
significant impact upon the response of
interest.

Statisticians distinguish between
parameters, which are fixed attributes of
the system, and factors, which are
attributes that can be altered by the
experimenter. The simulation environment is
somewhat unique, in that the experimenter
has total control over the model. He can
alter the level settings of parameters which
cannot be changed in the real system in
order to test the model ‘s sensitivity to
errors which arise in parameter estimation.
Hence we will use the term factor throughout
this paper to denote either a factor or a
parameter, where a statistician would
distinguish between the two.

Most experimenters face resource constraints
in terms of budgets, manpower, time, and
computing availability, to give some
examples. It is desirable to identify
factars which do not significantly alter the
results of the simulation, and to do so as
efficiently as possible. The experimenter
can then concentrate on accurate estimation
of those factors to which the simulation is
highly sensitive. This may also lead to a
simplification of the system model, possibly
yielding a more efficient simulation.[13]

The system response can be visualized as a
multi-dimensional surface in a space defined
by the factors. If a given factor has no
impact on the response, then the slope of
the response surface in that dimension will
be zero no matter what the factor levels are
for any other factor. Conversely, if the
slope of the response surface is non—z2ero
for any configuration of settings of the
other factors, then the designated factor
should be considered significant.

The branch of statistics which deals with
how to chaoose factor settings so as to gain
the most information from each experimental
unit is known as experimental design. We
will be considering experimental designs for
linear models. It is assumed that the true
response can be adequately approximated by a
linear combination of polynomial terms. We
are effectively performing a Taylor's series
expansion for the response surface. The
order of the polynomial terms determines
which factor conmfigurations should be used
to most efficiently identify significant
terms in the polynomial approximation. For
example, the slope of a straight line is
best determined by taking half of the
observations at the extreme upper setting of
the factor, and the remainder at the extreme
lower setting. Identifying a quadratic
function regquires aobservations from the
extreme values and from the midrange value
as well.

The traditional approach has been to set all
factors to the levels specifisd for one of
the design points of an optimally designed
experiment, and to make a run of the
simulation at that configuration of
factors. The basic experimental unit is
then regarded to be a single run of the
simulation. If runs are independently
seeded, each run is an independent
abservation. The drawback to this approach
is that the number of runs required
increases as a geametric function of the
number of factors.

Schruben and Cogliano developed a different
approach ta the problem.[5,141 Their work
makes use of the fact that spectral
estimatars at frequencies mare than a
bandwidth apart are approximately
independent. It is therefore possible to
obtain many virtually independent estimates
from a single simulation run if analysis is
performed in the frequency domain.
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The basic design of a spectral experiment
consists of selecting frequencies which can
be uniquely distinguished in the model
output., Each factor is varied at a
different one of these uniquely identifiable
frequencies., This is called a signal run.
Another run is made in which the factors are
held at fixed values., This is called the
noise run because with no variation in the
factors, any variation in the output is
attributed to noise. The spectra are then
estimated for the two runs, and the signal
to noise ratio is computed by taking the
ratio of the spectral estimators at each
fraquency. This ratio can then be plotted
and examined for spikes or peaks
corresponding to the assigned factor
frequencies.

Non-linear response surfaces can be detected
by virtue of the following elementary
trigonometric identity:

cos ¢ cos B = .Slcos(a — B) + cos{c + B8)1J.
It can be seen that product terms of factors
would show up as spikes in the spectrum at
the sum and difference of the component
factor frequencies. An example would be a
quadratic term, which would be identified by
observing a spike at double the input
frequency. A cubic term would be identified
by observing a spike at triple the input
frequency, and so an.

The procedure is complicated by two
problems. The first is called aliasing, and
is an artifact of discrete sampling.

Because we are observing a discrete sample
of points from a continuous process, the
highest frequency we can observe is .5
cycles/observation. Higher freqguencies will
appear at alias frequencies in the range
[0,.51. This alters the problem of
selecting frequencies to.one of selecting
frequencies and aliases which are uniguely
identifiable.

The second problem is that the system itself
is a filter of unknown characteristics. It
may either amplify or attenuate the response
at different frequencies. The amount by
which the response is altered at different
frequencies is called the gain function of
the system. There are saveral ways gain can
be accounted for. One possibility is to try
and estimate it using white noise
(uncorrelated random signals) as input. A
second approach is to assign more than one
frequency per factor and compare spectra for
the same factor to test for gain. A third
possibility is to treat gain as a nuisance
factor and use an experimental design which
blocks to eliminate it. This is the methad
used by Schruben and Cogliano. The noise
run can be incorporated with -the signal runs
with this design. It allows identification
of k factors using k+1 runs in the presence
of system gain.

Sanchez (11,121 has extended this work by
considering the use of distrete valued
functions as the basis for spectral

estimation. Several discrete function sets
were considered, and Walsh functions were

selected as having the most desirable
properties.

Walsh functions are two-valued functions
which constitute a complete orthao-normal
basis. They are similar to sine and cosine
functions in that they are grouped in pairs
with even and odd symmetry, designated as
Cal and Sal functions, respectively. A
major difference is that their variations
are not periodic. Instead of being grouped
by frequency, they are grouped by the
average number of variations on a fixed
interval. This is called the sequency of
the function.

Because of their completeness,
orthogonality, and discrete nature, Walsh
functions can be used to efficiently
represent systems with discrete behavior in
either the input factors or the responsa.
They can also be used to evaluate continuous
systems. It is interesting to note that
using Walsh inputs will yield an optimal
experiment for detecting linear affects.

This is because the design matrix for a 2¢

factorial experimental design is a k x k
matrix of Walsh functions.

Non—-linear effects and cross—terms can be
detected using the following Walsh identitys

WAL (=, T) WAL (B,T) = WAL(x & £,T)

whare:
a, B are integers
WAL (x, T) denotes the Walsh function
with « variations on an
interval of length T.

a8 denotes a bitwise exclusive
or operation on the binary
representations of @ and B.

The interested reader will find more
comprehensive descriptions of Walsh
functions and their characteristics in the
materials referenced.

The dasign of a Walsh spectral experiment
proceeds exactly as with a Fourier spectral
expariment. The experimenter must select
sequencies, make signal and noise runs, and
compute the ratios of the spectral
estimators.

Both types of spectral estimators will have

xz distributions if the errors are assumed
to have the faorm of Gaussian white noise.
Their ratios will have an F distribution i+f
the signal and noise runs were independently
generated. This fact can be used to
construct statistical tests of the
‘hypothesis that a given factor has no effect
on the model response.

There are relative merits to both
procedures. Fourier analysis is fairly
familiar to most simulation practitioners,
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and is insensitive to phase shifts in the
output. However, it cannoct be used with
systems which have discrete factors.

Walsh analysis is less familiar, and many
sequencies are extremely sensitive to phase
shifts (although not all are). However, it
can be used for discrete, continuous, and
mixed models. The practitioner should be
warned, though, that implementing discrete
factor spectral tests may present problems
which require policy definitions to be
clearly specified. For example, what should
be done to people in a multi-server queueing
system when the server they were waiting for
shuts down? One might a) distribute them to
other lines, b) let the server finish off
the line but allow no new entries, ar c)
make them disappear. Different options
might be useful depending on characteristics
of the original system being modelled, but
they will clearly yield different model
behavior.

The author will present a number of
different simulation models in the oral part
of this paper. The results of traditional,
Fourier, and Walsh sensitivity analyses will
be compared.
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