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ABSTRACT

Assumptions that are the basis for operational
analysis models of devices have the characteristic
that they can be proved to hold by observing the data.
Error measures are defined for the main operational
analysis assumptions. A method for deriving correction
terms is described. These terms are functions of the
error measures and can be used to get exact results of
behavior sequence performance measures of interest, such
as, mean number of jobs at a device. These performance
measures will be exact no matter how badly the opera-
tional assumptions are met by the data. Formulas for
performance measures that were developed assuming homo-
geneous arrivals and services were found to give exact
results under less restrictive conditions. Since the
performance measure correction terms can only be cal-
culated exactly with an amount of data that would be
required to obtain direct performance measure results,
ways to estimate the correction terms with reduced data
collection are suggested.

INTRODUCTION

Operational analysis (OA) is a term defined by
Jeffrey Buzen [1] for a type of analysis of observed
(i.e. operational) data provided by a system. This
type of analysis is used to calculate performance mea-~
sures (PMs) such as mean number of jobs at a device,
throughput, and response times for a particular time
series. What characterized the foundation of QA was
the use of

1. Testable assumptions,
2, Measurable variables,
3., Finite observation periods.

By testable assumptions is meant assumptions that
can be proved to hold by examining the data from the
system. For example, a common assumption is job flow
balance: the number of jobs that enter a device equals
the number that leave. This can be determined by sim-
ply keeping track of the two variables, arrival and
compietion times, and comparing them. These variables
are measurable., No variable that we can't measure or
derive from the data is used in OA. Working with a
specific set of output data implies a finite period of
observation in which the data was collected. OA
assumptions are about the behavior of system data. OA
says nothing about the underlying nature of the system
which generated the data. Because of this character-
istic OA seems to be less useful as a tool for predic-
tion than stochastic analysis.

DEFINITIONS
Some of the fundamental definitions are given

below. These are from [2]. For simplicity only a
single device is considered.
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n = The state of a device. The number of

jobs at the device.

N = Largest state of the device during the
period of observation.

) = Number of arrivals when n(t) = n.

) = Number of completions when n(t) = n.
T(n) = Total time n jobs are at the device.

A = Total number of arrivals at the device.
= A(0)+A(1)+A(2)+. .. +A(N-1)

C = Total number of completions from the
device.

= C(1)+C(2)+., . +C(N-T)+C(N)
T = Total time period of observation.
= T(O)HT(1)+T(2)+. . +T(N-1)+T(N)

p(n) = The proportion of time n jobs are at the
device.

= T(n)/T

pA(n) = The fraction of arrivals that find n jobs
at the device.

= A(n)/A

pc(n) = The fraction of compietions that Teave n
jobs of the device,

= c(n+l1)/C
As an example to illustrate these terms consider

the sequence of arrivals and completions given in
Figure 1.
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Figure 1. Sequence of arrivals and completions

at a device.
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The resufting quantities for arrivals are

A(Q) = 2
A1) =1
A(2) =2
A =5

and for completions are

c(1) =2
c(2) =1
c(3) =2
c =5,

Notice there are no arrivals in state N or completions
in state 0. The time for each state is

T(0) = 2
T(1) = 3
T(2) =3
T(3) =3
T =11.

The resulting proportions are
pA(O) = 2/5 pC(O) =2/5 p(0) = 2/11
pall) = 1/5 pc(l) = 1/5 p(1} = 3/11
pA(Z) = 2/5 pC(Z) =2/5 pl(2) = 3/11
p(3) = 3/11 .

The individual fractions sum to.1 in each case.

Figure 2 gives some examples of quantities which
can be calculated from the A(n), C(n) and T(n) values.
Notice that mean time between completion, S, is not
the same as mean service time because there can be
periods where no job is at the device. These opera-
tiohal quantities may be manipulated to derive rela-
tionships among them which are called operational
Taws. Some of the possibilities are given in Figure 3.

ASSUMPTIONS

Using the general characteristics of operational
analysis as a guide the analyst is free to make any
assumptions about the behavior of data that are con-
venient. Some of the simpler and more natural assump-
tions are;

1. One-step behavior - No more than one arrival
or completion may occur at a time,

2. Job~flow balance - The overall arrival rate
is equal to the output rate,

3. Homogeneous arrivals - The arrival rate is
constant for all states in which arrivals
occur,

4. Homogeneous services - The mean time between
end of services is constant for all states in
which completions occur.

If there is a network of devices then we might add
5. Routing homogeneity - The job flow rate

between any pair of devices depends only on
the state at the source of the flow.

${n) = Mean time between completions when n(t)=n
= T(n)/C(n)
S = Overall mean time between completions
= B/C
B = Total busy time
= T-T(0)
] = Utilization
= B/T
X = Qutput rate
= C/T
W = Job seconds of accumulated waiting time
N
= 3 nl(n)
n=1
Q = Mean number of jobs at the device
= W/T
R = Mean response time per completed job
= W/C
Y(n) = Arrival rate when n{t)=n
= A(n)/T(n)
Y0 = Overall arrival rate
= A/T
Restricted arrival rate

-
non

A/{T-T(N))

Figure 2. Example operational quantities [2].

pA(n) = p(n)(Y(n)/YO)
Y/¥q = 1/(1-p(n))
N-1

Y, = ; (m)Y(n)
0 n=]p

N
§= £ p.(n-1)s(n)
n=1

N
X = 3 p(n}/S(n)

n=1
U= SX = 1-p(0) {utilization law)
R = /X (Little's law)

Figure 3. Example operational laws [2].
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These assumptions are the ones used for this work.
Other authors have chosen other assumptions as needed.
For example, another version of the homogeneous
arrival assumption is

"The mean queue Tength seen by arriving
customers...is equal to the mean queue
length seen by an outside observer" [3],

Assumptions can become quite elaborate as the homo-
geneity of residuals assumption shows.

"The total of the forward service period
residuals seen by arrivals equals the
total of the backwards residuals" [3].

Here for arrival j the "forward residual is either the
time remaining in the service period during which j

arrives or zero if arrival j begins a service period...

Similarly backward residual is efther the time since
the beginning of the service period during which j
arrives or zero if arrival j begins a service period."

The use of assumptions allows us to calculate
PM's from the collection of some basic data. From
Figure 2

Si(n) = T‘i(n)/c'i(n)

assumes one-step behavior at device i. If job flow
balance is assumed we may say the completion distri-
bution is the same as the arrival distribution, then
each pA(n) = pc(n). By assuming both homogeneous

arrivals and service the average number of jobs at
device i is

- U1

n; = T:U;:E;Tﬁy (1-(N+])Di(n)) .

ASSUMPTION ERROR MEASURES

One of the objectives of this work is to con-
tribute to the understanding of the behavior of OA
assumption errors in observed data and to find ways to
improve OA estimates of performance measures at
devices and for networks of devices. Since the OA
assumptions are defined such that they can be verified
by observed data it is possible to define terms that
measure to what degree the assumptions are not met by
that set of data. These assumption error measures in
themselves can indicate a degree of confidence we
should have in any PM's calculated with formulas
derived using the assumptions whose errors are mea-
sured. Using the assumption error measures it is pos-
sible to develop correction terms which can be applied
to PM formulas to give exact results. That is, the
results that would have been obtained by the formulas
had the assumptions been met,

The particular error measures derived are as
follows [4]:

Job-flow Balance - eg(n) = (N+1)(pa(n)-p(n))

N-1 (n)
e. = I er(n
F n=0

Homogeneous Arrivals - eA(n) = pA(n) T}TnN) -1
N-1
_ nT(n)
e = g T-T(N ep(n)
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. - 1 T{n)
Homogeneous Services -~ es(n) = EZTH:TT TIOT |

* =
eS

nm=

I np(n-T)e (n)

Homogeneous Routing - eRi("’N) = pAi(n,N)—pi(n,N~1)

N
ep: (N) = % ney.(n,N)
Ri n=1 Ri

Notice that in each case a state dependent error mea-
sure and an overall error measure are given. The chief
characteristic of each error measure should be that it
equals zero if and only if the assumption it measures
holds. In the case of job flow balance if any eF(n)fo
then e .#0. This is because if the error at one State
is positive the error at any other state will also be
positive. This condition does not hold for homogeneous
arrival and service errors. From the example given in
Figure 1 we can calculate the following for service
error,

S(1) = 3/2 es(1) = -1/6
s{2) = 3/1 es(2) = 2/3
$(3) = 3/2 es(3) = -1/6
S = 9/5

N
ef= 1 npc(n-l)es(n) = 0.

n=1

This illustrates that we can have homogeneous errors in
each of the states and still get a zero value for the
particular measure defined by e*. Does this mean that
the formula for eg is 1nadequat3? It turns out that
even though ef is°a weak homogeneity assumption a value
of e§=0 is all that is necessary to use PM formulas

derived with the homogeneity assumption. The same weak
condition applies for homogeneous arrivals as well.

At a single device the values of the job fiow
balance error measures will go to zero as the length of
the period of data observation increases. The same
can't be said for the homogeneity error measures. For
example, for a device in a closed system the

Tim E[e*] = Q,-L
P \ AN

where: Q, = Mean number at the device seen by an
arriver,
LN = Mean number at the device excluding the
state N,
and
tim Efe*] = L,-Q
toem s, 0 “c
where: L0 = Mean number at the device excluding the

state 0,

QC Mean number at the device seen by a
completer.

Once assumption error measures have been found we
can develop correction terms. When the correction
times are added to PMs calculated using formulas
derived under various assumptions the result will be
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exact values for particular set data. In general, for
the PM 8 we want to find a correction term

= g-g%h

= F(error measures, simple quantities)

where QOA is the PM of interest calculated using
operational analysis formulas based on specified
assumptions.

Example 1. If we have homogeneous arrivals then

PAN) = p(m)/(1-p(n))  n=0,1,...,0-T

where the superscript indicates homogeneoui arrivals
is assumed. We want a correction term C(p n)) such
that

A

pa(n) = pA(n)+C(pﬁ(n)) n=0,1,...,N-1

after some algebraic manipulation the correction term
is found to be

C(pﬁ(n)) = ey(n) Tg%%%T n=0,1,...,N-1.

Example 2. If services are homogeneous then the mean
number at the device seen by an arriver is

= _ =5, .5

g = nA+C(nA)

where the superscript s indicates the homogeneous ser-
vice assumption. In this case

Sy -
c(nA) = eF-eg.
Example 2 brings up a couple of interesting points.

First, it can be shown that if eg is zero then er will

also be zero. That is, 1f we have weak homogeneity of
services job flow balance is guaranteed to exist, The
converse is not true. This will be true not just for
this calculation but for all cases. Second, even
though the model for ﬁi is determined assuming homo-

geneous services ﬁz will give an exact value for ﬁA
under the less restrictive condition of weak homo-
geneity.

USING THE CORRECTION TERMS

Two points should be emphasized about the use of
correction terms in operational analysis. One is that
the assumption error measures derived for use in PM
correction terms are for a particular set of data. A
new run with new data may produce different error
measures, particularly for a short behavior sequence.
Second, the amount of information needed to get the
error measures is the same as is needad to measure the
PM's directly.

In practice what will be needed are good estimates
of the error measures and using them, correction terms.
Several approaches for getting these can be investi-
gated. Three are

1. Find bounds on the error measures.
2. Estimate correction term values in "short"

runs and use them for estimating PM values
in longer runs.

Bengtson

3. Determine theoretical correction term values
and use them with simplified OA models to
estimate the PM's,

As an example of the error bound approach let

leg(n)| < & n=1,2,...N
Then
; (n-1)e (n)
e¥ = 1 np.(n-1)e_(n
S e C 5
< ¥ np (n=1) leg(n)1
- I c 7S
n=1
and
ef < on,

So, given a known upper bound, &, for each es(n) the
value of e*‘must be léss than or equal to § times ﬁ'.

But we know the e_{n)'s are not independent so t1ghter
bounds can be fouﬁd by solving

max eg = nE]npc(n-])es(n)

N
s.t. Tp (n-T)eS(n)=0
N=1

1 es(n) | <6 n=1,2,...,N.

Using Kunn-Tucker it can be shown that the solution is

* - -
es hd 6(nc nct)

where ﬁ;t is the average number of jobs at the device

seen by a completer truncated at the median state.
This can greatly reduce the maximum value on eg.

In a time serijes of observed data if the correc-
tion term is calculated periodically as new data is
generated the value of the correction term may sta-
bilize before the PM value itself. In that case we
can fix a correction value and from that point in the
series use formulas which simplify the PM calculations
based on OA assumptions to speed up data collection.
At the end of the time series (e.g. a simulation run)
we can then just add the correction term to improve
the PM estimate. This should lead to a reduction in
the Tength of the time series necessary to get some
desired confidence.

For specific OA models it is possible to deter-
mine expected values for correction terms. If we are
dealing with similar models then we can use the
0A models derived under the correction term assumptions
to simplify data collection and apply the theoretical
correction terms as estimates to improve the PM esti-
mates derived under the QA assumptions.

These techniques are areas for future research.
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SUMMARY

The error measures defined by this work in them-
selves can indicate the reliability of OA assumptions
about observed data. The OA assumptions are used to
develop relationships which can simplify the process
of estimating performance measures of simulation out-
put. Correction terms for these PM estimates can be
found which will give PM values closer to the actual
PM's for a set of observed data. These correction
terms can be used to reduce data collection and per-
formance measure calculations.
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