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ABSTRACT

In this paper a computerized automated warehousing
system is modeled through digital computer
simulation. The purpose of the study is to use
simulation as a means of optimizing the decision
parameters of the system. Those parameters define the
pattern of assignment of inventoried items to storage
racks. Previous work by other researchers have shown
that assignment of items based on their turnover time
{1ength of stay in the warehouse) reduces the average
travel time of the stacking crane used for storage and
retrieval. This study is aimed at finding the the
opitmum way in which the storage racks can be divided
and allocated to items with various turnover times.
Since the result of evaluating the system for a given
policy is only an error corrupted observation, a
stochastic optimization search has been employed. In
this search the simulation model is used as the means
of evaluating the value of the objective function for
the Tevels of the decision variables supplied by the
search method. The results of the optimization by
simulation have been compared with the optimums
obtained for a mathematical model. It is shown that
for the discrete rack systems better optimums can be
obtained by simulating the real system than
approximating it with a mathematical model.

INTRODUCTION

With the recent awareness about the need for
automating manufacturing and production systems
computerized automated warehousing systems is one of
the areas that deserves a lot of attention. A
computerized automated warehousing system consists of
a set of storage spaces (often in the form of racks)
and one or more stacking cranes which are controlled
by means of a mini or a micro computer. For items
arriving for storage, a space is found by the
computer, the crane is automatically given the
instruction for the store process and the storage
location is recorded by the computer. This
information is subsequently utilized when the
retrieval request for the same item arrives. Store
and retrieve requests wait in queues for the cranes to
become available. The computer assigns the crane to a
store or retrieve request through an optimum
assignment rule.

The problems to study with respect to automated
warehousing systems could be associated with the
hardware or the software. Hardware problems deal with
the design of mechanisms and control of the operation
of the crane and rack system. The software portion
deals with the optimum decision rules to be adopted
for assigning the items to racks and cranes to store
and retrieve requests. This study is aimed at the
Tatter aspect.

Hausman W.H., Schwarz, L.B. and Graves, C.G., in their
outstanding work reported in [1], [2] and [3],
discussed many aspects of decision rules for assigning
items to storage spaces with and without

interleaving. Interleaving is the process of
combining a store and a retrieve operation so that one
of each is performed in just one round trip of the
crane. They presented a model approximating the
discrete rack system with a continuous one. This
model assumes that rack is a continuous surface where
an item can be stored at any arbitrary point. Based
on analysis of this model they developed several
optimum policies which were tested for discrete case
through digital computer simulation.

This paper is an extention of their work in the sense
that basically the same assumptions are made on the
system and similar decision rules are sought.

However, here the optimal policies are developed
employing a simulation model of the system rather than
its continuous approximation. In addition the system
is considered as a stochastic one and is optimized
through stochastic optimization using stochastic
approximation method.

In what follows, first a short description of the
continuous model analyzed in [1], [2] and [3] along
with the major results obtained will be presented.
Then the simulation model used in this study will be
explained. Next the stochastic optimization procedure
employed will be introduced and the results of its
application to determine the optimum decision rules
for this system will be presented.

CONTINUQUS MODEL OF A WAREHOUSING SYSTEM

Hausman et al [1] consider the storage rack as a
continuous square like the one shown in Figure 1.
Point 0 is the input/output point (I/0 Point) at which
all the requests for storage and retrieval are
handied. The horizontal and vertical speed of the
crane is assigned such that from I/0 point the same
amount of time is required for the crane to reach the
farthest horizontal or vertical point. In other
words, the storage rack is square in time. The time
it takes to move from the I/0 point to a point with
X1 X2
coordinates (xj,xp) s Max [ EILET) 1 where sq and

sp are the speeds of the crane in Xy and x; directions
respectively.
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Figure 1: The Continuous Model of Storage
Racks.

The turnover distribution is derived from the ABC rule
for inventoried items. According to this rule, if
items are ranked in a descending order based on their
contribution to the overall demand often a smalil
percent of items (a%) represent a large percent of
the total volume of the demand (B%) . Common values
for aand 8 are o = 20% and B = 60%, 70%, 80% or
90%. For instance 20/80 rate (o=20%, B=80%) (which
is used in this paper) indicates that 20% of items
represent 80% of the total volume of the inventoried
items,

in [3], under certain assumptions, the distribution of
the turnover time (x) is derived as
z
Tz
= (2%
Fix) = ()
Where u is the overall averge length of stay of items
in the warehouse and z=2s/(l+s). s is a factor which
is determined by the type of ABC rule. For instance
for 20/60, 20/70, 20/80 and 20/90 rules the values of
s are .318, .222, .139 and .065 respectively.

for 0 < x <% 1)

Several decision rules regarding the assignment of
items to storage racks and the crane to the store and
retrieve requests have been examined. The simplest
rule is the assignment of the arriving item for
storage to the closest open Tocation (COL rule) and
first-in first-out (FIF0) rule for store and retrieve
requests (without making a distinction between the
store and retrieve requests). It has been shown that
with a given stable rack capacity utilization and
under steady state condition this rule is equivalent
to the random assignment rule in which arriving items
are assigned randomly to storage locations [1J].

A more efficient assignment rule is the Turnover-Based
assignment rule. The basic idea behind this rule is
to assign items with shorter turnover times to the
closer locations. Since these items are retrieved
more frequently, the overall crane travel time could
be reduced by implementing this assignment rule. This
rule will require the allocation of each group of

storage locations which are equidistance from the I/0
point (in terms of time) to a group of items with a
particular range of turnover time. Considering the
random pattern of the arrival of items to the
warehouse, in practice this assignment rule cannot be
implemented. This is due to the fact that if such a
policy is adopted many items will have to wait due to
the unavailability of their corresponding locations
while other rack locations are open waiting for their
corresponding items.

A compromise between the random assignment and
turnover-based assignment is the class-based
assignment. In the class-based assignment rule,
rather than allocating each equidistance group of rack
locations to a narrow range of turnover times, the
rack locations are divided into several classes with
respect to the time distance from the I/0 point. For
instance in a two-class storage assignment system the
locations are divided into two classes such that any
Tocation in class I is closer to the I/0 point than
any of those in class II. In the continuous case
these classes can be shown by rectangles such as those
shown in Figure 1. Similarly this can be defined for
3 or more class systems. The inventoried items are
also divided into the same number of classes based on
their turnover time. By storing ftems at locations in
their corresponding classes the total crane time could
be reduced compared to that of the random assignment
while sufficient flexibility is provided for arriving
items. .

The assignment policy for the crane also affects the
efficiency of the warehouse operations. The simplest
policy is to have store and retrieve requests all wait
in the same queue and have the crane serve this queue
according to FIFO rule. That is, the crane takes the
first request, say a store, starts from the 1/0 point,
stores the item, returns to I/0 point and then takes
the next request if there is one.

An alternate crane utilization is with interleaving.
In this case store and retrieve requests wait in
separate queues. The crane selects a store and a
retrieve request from their corresponding queues
according to a given rule. Then from I/0 point it
travels to the store Tocation and stores the item.
From there it travels to the retrieve location,
retrieves the requested item and then returns to the
1/0 point. Various rules can be provided for
selection of the requests from queues. FIFO rule will
select the first request from each queue. Another
rule is to select the first request from one queue and
then scan the other queue to find the request
corresponding to the closest rack Tlocation with
respect to the first request. The scan could include
all members of the queue or just the first k members.

The studies conducted in [1] and [2] test several of
the above policies with respect to the continuous
model. Using deterministic models and under certain
conditions they conclude that class-based storage
assignment rule results much more efficient system
output with respect to the crane time. In addition,
they determine the optimal fractions of the storage
spaces to inciude in each class for a two-cliass and
three-class systems. They also show that interleaving
cuts the crane time further more. In a subsequent
paper [3] the above results are tested on a simulated
model of the warehousing system of a discrete

nature. Their conclusion is that the findings on the
continuous model and under deterministic conditions is
generally valid. However, considereing the highly
stochastic nature of the system and the complexity
associated with the discrete nature of the storage
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Tocations some discrepencies between the continuous
deterministic model and more realistic ones are
expected.

In this study a simulation model of the system fs
constructed such that it is not only able to test the
effect of various assignment policies, it could also
be used as a vehicle to optimize the system
stochastically. The stochastic optimization will be
used to determine the optimum boundaries of each class
in the class-based storage assignment. For
optimization purpose the principles of stochastic
approximation are employed. These principles are
built in a simulation optimization program which is
capable of interacting with the simulation model and
determining the optimum values of the decision
variables through a recursive procedure.

FORMULATION OF THE PROBLEM

To formulate the problem as a simulation optimization
one, the objective of the optimization and its
relationship with the decision variables of the system
have to be defined.

The Objective

Several objectives can be defined for this warehousing
system. Perhaps the most significant objective is
that of the efficient handling of the storage and
retrieval requests. Efficiency could be defined in
terms of shorter storage queues which transiates into
smaller counter or conveyor length for holding items
arriving for storage. It could also be defined in
terms of shorter retrieval queues which affects the
delay of delivering retrieved items. Throughput
(number of requests served during a given time) fis
another measure of efficiency of the operation.

One factor which directly or indirectly affects all
above measures is the average service time required by
the crane to serve a request. This is the average
round trip time of the crane per a storage or a
retrieval. For a given rate of arrival of the items
for storage and a given distribution of length of stay
of items on the storage racks, the length of the
queues for the store and retrieve requests and the
throughput are all functions of the service time of
the crane. Due to these considerations the objective
in this paper is to design a policy that minimizes the
average round trip time/item for the crane.

Decision Variables

As indicated earlier the crane travel time is affected
by two major types of assignment and priority
policies. These are the pattern of assignment of
storage spaces to items and the assignment of the
crane to incoming requests. The storage spaces could
be assigned randomly (COL Policy), which is the Teast
favorable one, or be assigned according to classes.

No particular decision variable is involved in the
random assignment policy. Each arriving item is
stored in the closest open location. Thus there is no
ground for optimization.

For class based assignment, however, a decision must
be made on the number of classes and the boundaries of
each class. The variables involved in this case are
of quantitative nature and can be incorporated into an
optimization formulation. In this paper boundaries of
classes are taken as decision variables. These are
based on the length of stay (LOS) of the items in the
warehouse. In terms of mathematical notations let xy;
i=1, 2,...k be the upper bound on the LOS of the items

that are to be assigned to class i in a k-class
system. That is, items with the LOS between O and x;
are to be assigned to class 1, between x; and xp to
class 2, and so on. Then the outcome of the system
will be a function of xj, Xp,...Xy and k.

The policies regarding the assignment of the crane to
items affect the system in a different manner. The
crane could be assigned to the combined queue of the
store and retrieve requests to serve them according to
FIFO rule. Alternatively in the case of the shortage
of waiting space for items coming for storage the
priority could be given to store requests. It is also
possible to give priority to the retrieve requests in
order to minmize the.delay in service. There is also
the possibility of adopting interleaving.

Since the crane assignment policy affects the system
structurally rather than parametrically, the
optimization in terms of decision variables has to be
done separately for each individual crane assignment
policy. In this paper two policies of with and
without interleaving will be studied. In the no
interteaving case the store and retrieve requests are
all put in he same queue and are served based on FIFO
policy. In the model with interleaving store and
retrieve requests wait in separate queues. If there
are items in both queues, the first item in the store
queue is selected. Then the retrieve queue is scanned
for a request most suitable to be combined with the
store request. If only one queue contains requests,
that queue will be served by FIFO policy.

The Objective Function

The objective function for this problem can be
implicitly expressed as

Y = f(xl, X2y eeeXks k)

where Y is the average round trip time for the crane,
Xb’ x%,...xk are the boundaries of classes in terms of
LOS of items and k is the number of classes.

Obviously if f(.) could be defined as an analytical
function of the decision variables the problem would
have consisted of a classic minimization of a mixed
integer problem. However, this is not the case and
there are two major complexities involved. First, the
relationship between the crane time and those of the
decision variables is so complex that derivation of a
mathematical function that represents the real system
is not always possible. Of course some functions can
be derived by approximation and making some
assumptions. For instance Hausman, W.H. et al [1]
have derived such a function for continuous rack space
and some additional assumptions. However, as it will
be shown later the results obtained under some of
those assumptions may not be valid for some other
situations.

In the absence of an analytical relationship between Y
and the decision variables, the simulation is the best
technique for evaluating the response of the system
for any given levels of the decision variables. Being
able to evaluate the response of the system for any
given X1, X2,...X; and k opens the possibility of
using search methods to determine the optimal values
of those variables. However, there {s yet a major
characteristic of the response obtained from
simulation which creates a problem for optimization.
This is the second complexity associated with such
systems as is explained below.

This complexity is due to the stochastic nature of
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such a system. Since the arrival patterns and the
length of stay in the warehouse for {items are random,
the result of evaluating the average crane time for a
given policy is also random. That means the objective
function is a stochastic function of the decision
variables. In other words, for a particular policy
the value of the objective function varies from one
observation to the next. This fact affects the
ability to optimize the system. The reason is that in
order to apply a search method the values of the
objective function at various points have to be
compared with each other. However, since the value of
the objective function is always accompanied with
error, the results of comparisons of points cannot
always be relied upon. This in turn may cause the
search method to converge to a wrong point.

One remedy often used for stochastic objective
functions is to make several observations at each
point (several simulation runs with different random
numbers) and use the average as a deterministic

value. This may or may not alleviate the problem. It
will not if the variation is too much, because the
average of several observations would stiil contain
too much error. In addition, if the simulation model
is large it will cost too much to make several
observations at each point.

Stochastic approximation is a method which, if applied
properly, alleviates both of the above problems to
some extent. Before describing the simulation model
employed for this problem and presenting the results,
a brief explanation of the stochastic approximation
method and the algorithm used in this paper is given
in the following section.

APPLICATION OF STOCHASTIC APPROXIMATION METHOD TO
SIMULATION OPTIMIZATION

Let us show the response of interest from a simulation
model by Z. Since this response is stochastic, Z will
be a random variable. Obviously the response of the
simulation model is a function of the structural
behavior and the levels of the decision variables of
the system. Thus, for a particular structure of a
simulation model Z can be defined as

Z = f{xg, Xgeeoxy) = F(X) (2)

where X1, Xg...Xy are the decision variables
of the system ang X is an m-dimensional vector whose
COmpoNents are X, Xpe.«Xpe

The fact that Z is a stochastic (and not a
deterministic) function of X prompts two
considerations in its optimization. First, for a
given X the response of each evaluation of the system
(each Simulation run) Z will be different from the
next (using a different random number stream). As was
mentioned earlier, this creates a problem for
application of a search method for optimization.

The second consideration involves defining the
optimization for this case. Optimization is usually
defined as the procedure of obtaining optIma] values
for components of X such that the response is either
minimized or maximized. However, in this case, the
response of the system for any given X is a random
variable and minimization or maximization cannot be
applied to random variables. Thus one has to pick a
particular characteristic or a parameter of the random
variable as the subject of optimization. This
parameter could be the mean, variance or any other
parameter of the random variable. Often optimization
is aimed at the true value of the response which for
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most practical problems is the theoretical mean of the
random variable representing the response. For
instance in the present study we look for the optimum
values of the boundaries for classes such that the
mean of the crane time per item is minimized.

In order to search for the optimum mean through a
search method, at each point the mean of the response
has to be eva]uated When the means of evaluation is
simulation, this means a large umber of replications
or a long simulation run at each point. However, even
these may not yield a good estimte of the mean.

Stochastic approximation method (SAM) is a
mathematical technique which provides a reasonable
solution to the above probiem. Let

Y(X) = EL(ZX)] (3)

be the regression function of Z and let X° be the
value of vector X for which Y(X) is optimum. Then

Y(x9) = E[Z]|x%] = (4)

Z|x?

will indicate that X° is the optimum value of X for
which the mean of random variable Z(X) is better than
its mean at any other point.Thus X° Ts the solution
for the stochastic optimization. ~However, finding X°
depends on the availability of the theoretical
regression function Y(X) which is never available.

The most one could do is to estimate Y(X) through
regression analysis. The estimation of Y(X) is not
feasible due to its extreme]y high cost if a
reasonable accuracy is to be obtained. Stochastic
approximation method is a technique by which the
optimum value of Y(X) can be approached using just one
observation of Z at each point and without the need of
estimating Y(X).

According to one version of SAM if a, and c, are two
series of numbers such that
£a ==
n=1 "
nflancn <"
" (5)
and I {a_/c¢ )2 <
—an’Tn
n=
then X, in the recursive formula
_)Sn+1 = X ( n/c ) (_)_(_n’cn) <6>
approches X° when n + «=. Vector T(X,c,) above 1%
obtained us1ng responses of the system where its {th

component is

t1‘ z (Ln+cn—1

Uy is the unit vector of the ith coordinate.

) - Z(X ) i=1,2...m (7)

There are a few not so restricting conditions that
have to exist for the above procedure to converge.
Three main conditions are:

= X1, XpeeoXy Must be continuous var{iables

- The variance of Z(X) must be finite for all
values of X

= Y(X) must be a unimodal function.
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The last condition is of course somewhat restrictive,
but since this restriction is present for almost ail
search methods, the penalty associated with using SAM
is not more than any other one. In fact, if the
function is not unimodal, the optimum found would be a
local rather than the global one.

The main restriction of SAM is the requirement of n to
approach infinity. However, for some sacrifice in
accuracy, this procedure has been modified in Azadivar
[4] and Azadivar and Talavage [5] to approach to the
optimum within a reasonable number of simulation

runs. The algorithm developed is called SAMOPT.
SAMOPT is an optimization package that can be
interfaced with any simulation program. Based on the
input data which consists of upper and Tower
boundaries on variables, the number of simulation runs
allowed and the criterion for stopping, SAMOPT
supplies a suitable starting point for the start of
the search. Then applying a modified version of
recursive formula (6) the search continues until the
optimum is reached within the prespecified precision
1imits. The program is also capable of taking {into
account a set of linear constraints on the decision
variables. Further description of SAMOPT and the
results of tests performed on it can be found in [4]
and {5].

THE SIMULATION MODEL

Assumptions

The simulation model constructed and analyzed in this
paper employs basically the same assumptions made in
[1], [2] and [3] with a few variations in some of
them. The main assumptions are

- The demand for items is based on ABC rule with
20/80 ratio.

- The transfer of all pallets containing items
from the conveyor to the stacking crane and vice versa
takes place at a single point located at the bottom
teft corner of racks (I/0 point).

- A11 rack locations are identical.

- The time to reach a particular location in the
rack system is equal to the maximum of the horizontal
or vertical movement time taken by the crane.

- Only one item is assigned to each pallet and
crane can carry only one pallet at a time.

- In models without interleaving store and
retrieve requests are put in the same queue and are
served according to FIFO policy. In models with
interleaving there are separate queues for store and
retrieve requests. When both queues contain erquests,
the first unit in the store queue is selected. Then
all the requests in the retrieve queue are scanned to
find the one belonging to the closest rack location to
this store request.

Numerical Values

A warehousing system with the following numerical
values for parameters is considered. The rack
consists of 20 rows and 20 columns with an overall of
400 locations. Interarrival time for incoming items
is exponentially distributed with an average of 1.5
time units. The average length of stay for items is
540 time units. This will result in a theoretical
rack utilization factor of 90%. The theoretical rack
utilization is obtained from

R= AN (8)

where A {s the average umber of items arriving for
storage per unit time (1/1.5 in this case), wu is the

U

average length of stay (540 here) and N is the total
number of available rack spaces (400).

The crane is assumed to move from one rack space to
the next in .05 time unit in both horizontal and
vertical directions. Thus, the time it takes to move
from a location at row ry and column c; to a location
at row rp and column cp is obtained from

t = .05 Max(|ry~ raf,fci- c5f) ()

The coordinates at the 1/0 point are both zero. Thus,
the maximum one way travel time for the crane s one
time unit (.05 x 20).

In class based storage space assignment the items are
classified based on their Tength of stay. Let xp,
XpseeX, be the upper boundaries of classes 1 through
k. Since the upper boundary of the last class
coincides with maximum length of stay the number of
variables to be determined is always k-1. That is,
for a 2-class system there is only one variable to be
specified. For 3-class system xj and xp have to be
specified.

The assignment of the storage spaces to each class is
based on the average rack utilization. The storage
locations are assigned to each class such that each
class will have approximately the same rack
utilization as the entire system. This {is done as
follows. Let x be the upper boundary of the length
of stay for items in class 1. The total number of
storage locat{ions required to hold these items can be
obtained from

X
My = A é xf(x)dx (10)

where X is the average arrival rate and f(x) {s the
density function for the length of stay of items. As
stated earlier

1...
Fx) = (B 0 <x (1)
u zZ

where z = 2s/(s+1) and u is the overall average
Tength of stay [see (3)]. s is a factor which depends

on the type of ABC curve for the demand. For our
20/80 system s=.139, From (11)
2 2z-1
z x 1=z
f(x) = —— (=) (12)
u(l-z) ¥

The total number of storage locatjons needed for all
items is
in

M =2 0[ E&f(x)dx = Ay (13)

The fraction of the storage spaces to allocate to the
first class is then given by M;/M. Then the number of
storage locations to allocate to class 1 out of a
total of N rack locations is

!
My A [ Txf{x)dx
NL= e N= oy
M An
or
N X]. ZXy ‘1T‘
1 == [ xf(x)dx = N(——) z (14)
w O s

=
1
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This would require the allocation of the Ny closest
locations to the first class. Since the rack is
square in time, these locations are in a square whose
one_corner is 1/0 point and has sides consisting of
1|/Nl rows and the same number of columns.

Similarly for class 2 the number will be

N xo ZXg -1%2- ZX) '15—2
No= — f xf(x)dx = N[(_ﬁ—) - (—E_) ]

wox (15)
and the locations_will consist of those between a
square of size /N‘+N2 and another of size VN,.
Since the storage SpacCes are discrete, the resu%ts are
rounded to the closest integer. If there are more
classes, the corresponding rack spaces can be
allocated by extending the above procedure.

ANALYSIS AND OPTIMIZATION OF THE SIMULATION MODEL

Four different structures for the simulation model are
analyzed. These are 2-class system without
interleaving, 2-class system with interleaving,
3-class system without interleaving and 3-class system
with interleaving.

In 2-class systems the variable to be optimized is the
upper boundary of the length of stay of the items to
be stored in the first class. Note that the time
(rather than the number of rack locations) was
selected as the decision variable in order to comply
with the continuous variable requerements of SAM. For
3-class systems 2 variables of xjand xp corresponding
to the upper bounds on the length of stay for items to
be included in class 1 and 2 respectively, were
considered. In addition the constraint xp>x; is added
to assure the feasibility of the solutions.

For 2-class systems the upper and lower boundaries of
5 and 0 were specified on the variables. 70
simulation runs were allowed. (SAMOPT algorithm
requires this information.) The same range was
supplied for x; and xp for 3-class systems, but the
number of allowed runs weére increased to 100,

The system was simulated by SLAM simulation Tanguage
[6]. For each run, after allowing the system to reach
its steady state the statistics were cleared. Then
the statistics were collected for 2000 time units.
This interval corresponds to arrival of

about 2000/1.5=1,333 items. Since the items that are
stored must eventually be retrieved, in steady state,
this time interval corresponds to about 2,667
observations of the crane time. In practice the
number was slightly less because some of the items
waiting for storage in the store queue, were rertieved
before being stored.

The 1interface between SAMOPT and the simulation model
takes place as follows. Based on initial information
SAMOPT performs a design of experiment calling the
simulation program for evaluation of various points.
Through this a suitable starting point is obtained.
This starting point is used as the first value in the
stochastic approximation recursive formula (n=1).
Then whenever the value of Z is required SAMOPT
supplies the values of the decision variables and
calls the simulation program.. This continues until
the aliowable runs are exhausted or the desired
precision 1imit is reached. The flow chart for this
procedure is shown in Figure 2.

Initial bounds on
variables,
Constraints, and
Stopping rules

Z(XI’XZ""'

SAMOPT

Xl’XZ"" X

SIMULATION
MODEL

L Kgseen X )

Are
stopping rules
satisfied?

Print the Results

Figure 2: Flow Chart of the Interaction between
SAMOPT and The Simulation Model.

Results of Optimization

The results of optimization are shown in Table 1. 1In
this table the response of the discrete model for the
optimum values of decisfon variables obtained from the
continuous model are also shown. The x values for
cqntinuous model are obtained by using the ratios
given in [2] in conjunction with the density function
of the length of stay. The table shows the optimum
values of the decisfon variables and the average time
for crane in each case. The average crane time is the
average of 50 runs each for 2000 time units. Also
given in the table {s the estimated standard deviation
of these averages. The standard deviation is used for
testing the difference in the mean response of the
system for alternative values of the decision
variables.
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Responses Using Optimums Found By Responses Using Optimums Found By
SAMOPT Contiuous Model
X, X, z* szf* X X, 7 Szf*
S?gﬂgﬂtA§§1§:T§251ng 1.2964 0.0033 1.2964 0.0033
ﬁ?ggoTnQZi;gggig; 0.8943 0.0018 0.8943 0.0018
5;g;gai ?ii;g?gicgng 478.50 0.é235 0.0036 331.65 0.9531 0.0045
ﬁ;g;a§§téi?lgc?ggt 440.80 0.7421 0.0015 331.65 0.7445 0.0017
a;g;gii ?:ilg?228$ng 124.50 {.591.00 0.7595 0.0028 44,07 | 661.58 0.7874 0.0025
3;$Aa§§t2i?223?ﬁgt 179.60 {1320.00 | 0.7034 0.0015 44.07 | 661.58 | 0.6981 0.0019

* 7 is the average of 50 replications.

Fk SZ'iS the estimated standard deviation of the 7 based on the same 50 runs.

Table 1: Results of Optimization

The table generally agrees with the results obtained
in [13, {2] and [3]. The random assignment without
interleaving is the worst case, while the 3-class
system with interleaving provides the lowest crane
time. However, the results of the optimum found for
class boundaries are somewhat different. This
difference is especially significant in 2-class and
3-class systems without interleaving. As it is seen,
the results obtained by SAMOPT are significantly
better than those obtained by optimizing the
continuous model. A test of significance at 95% level
indicates this difference.

The difference between the results for models with
interleaving i{s not significant. This was, in a
sense, expected, because in systems with interleaving
the boundaries should not necessarily be similar to
those without interleaving. In other words, square
shaped classes are not necessarily the optimum
arrangement for systems with interleaving. As a
result the response of the system is less sensitive to
the boundaries specified in terms of squares. In
fact, test runs indicated the flatness of the response
surface of such models with respect to a considerable
portion of the feasible region.

CONCLUSION

This study shows the potentials of optimizing real
world systems through simulating them and using the
simuTation model for search purposes. Mathematical
models provide a useful general insight into the
problems, and are more suitable for application of
optimization routines. However, as it is shown here,
when systems become stochastic and more complex better
results could be obtained by applying optimization to
responses obtained from the simulation model of the

system. With regard to the warehousing model, in
addition to the cases considered in this paper, there
are a lot of other situations that could be modeled
and optimized. For instance, possibilities of other
shaped division of rack spaces (other than squares)
would be of interest, especially when interleaving is
adopted. The dimensions of these shapes would be
suitable dicision variables for optimization. Also
other structural changes, such as carrying more than
one pallet at a time, can be tested and corresponding
variables optimized through simulation optimization.
Some of these possibilities are currently under study
by the author.
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