Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

203

USE OF LATTICE STRUCTURES FOR REDUCTION OF SIMULATION RUN TIME

Norman S, Matloff
Department of Electrical and Computer Engineering
University of California at Davis

ABSTRACT

The use of quasi-random numbers has been shown to pro-
duce significant reductions in simulation run time, for
a given target level of accuracy. Such reductions come
from the uniformity of the sampling process generated
by the quasi-random numbers. In this paper, a method
is proposed under which quasi-random numbers can be
used to achieve even greater reductions in run time.
The method applies to a large class of simulation oper-
ations, specifically those in which some time~consuming
but updatable operation is performed.

1. SIMULATION THROUGH QUASI-RANDOM NUMBERS

There is a substantial literature concerned with
reduction of run time in simulation software. Most of
the work has taken a probabilistic approach, aimed at
reducing the output variance for a given amount of
data. Examples of this are antithetic and control
variates [7].

Another approach, less common, has been that of quasi-
random numbers (e.g. [3], [51, [1] and [2]). Here the
theme is qualitatively different from that of variance
reduction. The motivation here is not probabilistic,
even though the goals are still to estimate probabili-
ties and expectations. Instead, there is a definite
deterministic flavor to the method, more in the direc-
tion of numerical integration. The idea is to actively
choose data points to represent the distributions being
sampled, rather than simuiate sequences of random vari-
ables directly. Good choices of points will cover the
data space more uniformly than points generated in the
usual random fashion, with the result being that the
distributions will be approximated more accurately.

The concept will be made much easier to discuss by re-
ferring to the following very simple example: Suppose
X and Y are independent random variables having expo-
nential distributions with means 10.0 and 20.0, respec-
tively, and that we wish to find P({X-Y| < 5.0). The
usual approach would be to repeatediy (say, N times)
generate pairs (Uj,Up) of independent U(0,1) random
variables, and then form (X,Y) as (-0.101n{Uy),
-0.051n(Up)). Let U1j, Uzj, Xj and Y (i=l,.s.,N)
denote the N sets of random numbers generated. The
desired probability would then be estimated as the
proportion of subscripts i such that |Xj-Yj| < 5.0,
among i=1l,...;N.

The method of quasi-random numbers takes a substantial-
1y different approach to this problem. To describe
this approach, first note that in the classical simu-
lation procedure described above, what is really occur-
ring at the foundation is that we are using the N
points (U11,U21)see0,(UN,U2n) to approximate the uni-
form distribution on the unit square [0,1]2. The idea
of quasi-random numbers is then to improve on this
approximation by choosing the pairs (Uyj,U2i) in such a

way as to better approximate the uniform measure on
[0,112. In the form to be used here, the pairs can be
taken to be the nodes on the lattice

_01 M-1.2 _ 1 dy.s s
Q,(M,Z) = {ﬁ,'ﬁ,...,T} = {(ﬂ-,ﬁ).'l,.]—o,l,...,M—l}, (1)
where M=N1/2 and N is taken to be a perfect square (it
is better to use k+ﬂ'5 instead of %, but the Tatter
will be used to simplify notation).

The fact that the points in ¢(M,2) are more uniformly
spread out over the unit square implies that the re-
sulting estimator of P(|X-Y| < 5.0) is substantially
more accurate than the estimator obtained by the usual
probabilistic approach to simulation. This is dis-
cussed in detail in the references on quasi-random
numbers cited above., However, in many applications
the special lattice structure such as that in g(M,2)
can be exploited to yield even better accuracy. It is
this point which is the subject of the methodology
introduced here.

The approach proposed here is concerned with those
applications in which one of the operations being sim-
ulated is a time-consuming but "updatable" procedure.
For example, sorting is an updatable operation: Sup-
pose we have a sorted 1ist of d numbers, and that one
of these is replaced by a new value. Then the new
sorted 1ist can be obtained from the old one in
0(1ogpd) operations, using a binary search to find the
position at which the new value should be inserted;
this is in contrast to the 0(d logs d) operations
needed if the whole set of numbers were to be sorted
"from scratch",

The purpose of this paper is to develop techniques

with which this updatability quality can be exploited
in the quasi-random number setting.

2. THE PROPOSED METHODOLOGY

We first need some notation. Define the lattice
2(M,d) to be the d-dimensional analog of %(M,2).
Formally, the lattice is defined as the d-fold
Cartesian product

M-1.d (2)

3T s

91
{ﬁ’ﬁ’ ..

i.e. the set of all d-tuples whose entries are of the
form %-(k=0,1,...,H—1). Mote that nodes in the

lattice may be considered as d-digit, radix-M numbers;
this interpretation then defines an ordering on
2(M,d): If A and B are nodes on the lattice, then

A < B means that A is smaller than B when considered
as a radix-M number.

204 Norman S. Matloff

Suppose that the simulation will consist of N replica-
tions of some setting in which there are d independent
(but not necessarily identically distributed) random
variables, X1,X2,esesXds It will be assumed that each
random variable Xj can be generated using a single
U{0,1) variate Uj. Note that although there are some
distributions which are typically generated by more
than one U(0,1) variate, such distributions can still
be obtained using one such variate. For example, let ¢
denote the cumulative distribution function for the
standard Gaussian distribution N(0,1}, which usually
needs several U(0,1) variates for generation [4].
®-1(t) can be found numerically for, say, t equal to
i/10000 (i=1,...,10000), and stored on disk for use
both in the currént and in future simulations. Then
the standard Gaussian random variable Z can be gener-
ated as -1(U*), where U is a U{0,1) variate and U' is
equal to the value of U rounded up to the nearest point
of the form i/10000. Other Gaussian distributions can
then easily be obtained from Z.

Thus each generation of the random variables Xj,...,Xd
will come from a corresponding set Uj,...,U4. Let
U1i,U2i5e04,Uqi denote the uniform variates used in the
i-th generation, and let V; denote the vector

(UgiseeesUdgi)(i=1,.0a,N).

In the simplest setting, Vi,...,V§ will cover the lat-
tice 2(M,d), so that N=Md, Thus Vi will be the point
in the lattice which is the radix-M representation of
j-1. As mentioned above, the kinds of applications
being considered here are those in which the simulation
study involves some updatable procedure M. Let m(k)
denote the result of determining the value of I on Node
k of the lattice (k=0,1,...,N=1). Then if Node k is an
immediate neighbor of Node k-1 (i.e. differing only in
the last coordinate), (k) can be obtained from updat-
ing m(k-1). The proposed simulation algorithm is then
thé following:

initialize sums (e.g. counts for probabilities);
for i:=1 to N do
begin
if (i mod d = 1) then
find m(i-1) from scratch
else
find m(i-1) by updating the value found
previously for n(i-2);
add to sums
end;
report results

Example

Suppose a system consists of 6 components, having
independent, exponential 1ifetimes with means
1.0,2.0,...,6.0 hours, and that we need to know the
probability that at least two failures occur in some
0.2 hour period of time. When the above algorithm was
applied with M = 4, the simulation used 16.8 seconds of
CPU time on a VAX 750. However, the standard Monte
Carlo algorithm consumed 34.9 seconds of CPU time.
Thus the algorithm introduced above achieved a 52%
reduction in time. [With regard to accuracy, the
proposed algorithm reported a probability of 0.6099,
while the standard method reported 0.6150. The true
value is 0.6127.]

3. USE IN HIGH DIMENSIONS
The method introduced in Section 2 exploits updatabil-

ity by sampling every node in £{M,d). This may not be
feasible for larger values of d. For example, even

2(2,20), with its minimal value of M and moderate
value of d, has more than a million nodes.

The reasonable solution would seem to be sampling of
some regular subset of 2(M,d), say every k-th node in
the radix~M ordering used here. However, this may
mean that we would not be able to take advantage of
updatability: The method in Section 2 implicitly uti-
lized the fact that two nodes which were consecutive
in the sampling process are usually immediate neigh-
bors in the lattice.

To analyze this aspect, suppose we wish to sample N
nodes in all, with the nodes spaced k nodes apart, as
indicated above. Then

Qa.

¥

=

k= (3)

=]

This implies that the radix-M representation of K will
have

r=d - logyN (4)

digits. Thus, since two nodes which are consecutive
in this new sampling process will usually differ only
in their last r digits, the two nodes will typically
have about logyN digits in common. This commonality
may serve as a basis for taking advantage of updata-
bility.

For example, consider the case of sorting, with d =
20, M = 5, and N = 1000. Two consecutively sampled
nodes will then typically have the first 4 of their 20
digits in common. Thus to obtain the second sorted
list by updating the first, the last 16 digits of the
new node can be sorted, and then a merge operation can
be applied to these digits and the first 4 digits.

The time ratio, compared to sorting the 20 elements
from scratch, is about

20 109,20
16 Tog, 15°

i.e. a time savings of about 35%.

Note that much larger reductions in CPU time will be
obtained for updatable operations having much greater
time complexity than that of sorting. For example,
the Traveling Salesman Problem with n points requires
0(n2n) comparisons [6]. In a simulation study of this
problem with randomly generated points in the plane

(d = 2n), quite large savings in time can be achieved.

REFERENCES

1, Fishman, G., "Antithetic Variates and Quasirandom
Points as Variance Reduction Techniques,"
Proceedings of the 1983 Winter Simulation
Conference, 557-558.

2. Fox, B., "Counterparts of Variance Reduction
Techniques for Quasi-Monte Carlo Integration,"
Proceedings of the 1983 Winter Simulation
Conference, 621.

3. Halton, J., "On the Efficiency of Certain Quasi-
Random Sequences of Points in Evaluating
Multidimensional Integrals," Numerische
Mathematik, 2, 84-90, 1960,

7e

Use of Lattice Structures for

Knuth, D., The Art of Computer Programming:
Seminumerical Algorithms, second Edition, Addison-

WesTey, Massachusetts, 1981, Section 3.4.1.

Niederreiter, H., "Quasi-Monte Carlo Methods and
Pseudo-Random Numbers," Bulletin of the American
Mathematical Society, 84, 957-1041, 1978.

Reingold, E., Nievergelt, J., and Deo, N.,
Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, New Jersey, 1977, Section 4,1,

Method, Wiley, New York, 1981,

Reduction of Simulation Run Time

205

