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AN EXHAUSTIVE SEARCH FOR OPTIMAL MULTIPLIERS
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This paper presents the results of an exhaustive
search to find optimal multipliers A for the multi-
plicative congruential random number generatgr

Z; = A Z;_q (mod M) with prime modulus M = 231 -1,

Since Marsaglia (1968) has shown that k-tuples from
this and the more general class of linear congruen-
tial generators lie on sets of parallel hyperplanes,
it has become common practice to evaluate multipliers
in terms of their induced hyperplane structures. This
study continues the practice and regards a multiplier
as optimal if for k = 2,...,6 and each set of
parallel hyperplanes the Euclidean distance between
adjacent hyperplanes does not exceed the minimal
achievable distance by more than a prespecified
amount. The concept of using this distance measure
to evaluate multipliers orginated in the spectral
test of Coveyou and MacPherson (1967) and has been
used notably by Knuth (1981). However, the criterion
of optimality defined here is considerably more
stringent than the criteria that these writers pro-
posed.

First proposed by Lehmer (1951), the muTtiplicative
congruential random number generator has come to be
the most commonly employed mechanism for generating
random numbers. Jannson (1966) collected the then
known properties of these generators. Shortly there-
after Marsaglia (1968) showed that all such gene-
rators share a common theoretical flaw and Coveyou
and MacPherson (1967), Beyer, Roof and Williamson
(1971), Marsaglia (1972) and Smith (1971) proposed
alternative procedures for rating the seriousness

of this flaw for individual multipliers. Later
Niederreiter (1976, 1977, 1978a,b§ proposed a rating
system based on the concept of discrepancy, a measure
of error used in numerical integration. With regard
to empirical evaluation, Fishman and Moore (1982)
described a comprehensive battery of statistical
tests and illustrated how they could be used to
detect local departures from randomness in samples of
moderate size taken from these generators.

Although the theoretical rating procedures have
existed for some time, with the exception of Hoaglin
(1976), Ahrens and Dieter {1977) and Knuth (1981},
Tittle use has been made of them. The present study,
by its sheer exhaustiveness, removes this deficiency
for generators with M = 231 -1, The worst case
performance measures that have been proposed to rate
generators in k dimensions include the maximal
distance between adjacent parallel hyperplanes, the
minimal number of parallel hyperplanes, the minimal
distance between k-tuples, and the discrepancy. The
best multipliers for the modulus and their perfor-
mances for all these measures are presented. Lattice
packing measures are presented and the given multi-
pliers perform well with respect to these measures.
Also, the packing measures in the dual space are
identical with Knuth's figure of merit for evaluating
generators. Our results qindicate that with regard to
this criterion, the five best multipliers for

M = 231 _1 perform better than all 30 multipliers
1isted in Table 1 of Knuth (1981, pp. 102-103).

Bounds on discrepancy are also computed and discussed.
The results of a comprehensive empirical analysis of
the local sampling properties of the best multipliers,
using the procedures in Fishman and Moore (1982),
indicate no evidence of departures from randomness.
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