Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

187

SOME EFFICLENT RANDOM NUMBER GENERATORS FOR MICRO-COMPUTERS

Arne Thesen, Zhanshan Sun and Tzyh-Jong Wang

Department of Industrial Engineering,
University of Wisconsin-Madison, Madison, WI 53706

ABSTRACT

The relatively slow speed and small word size of the
current crop of micro-computers cause the efficient
production of pseudo~random numbers on these
machines to be considerably more difficult than on
larger computers. As a consequence, some micro-
computer-based algorithms are excessively time
comsuming, while other algorithms trade off speed

against "randomness". To alleviate this problem, we
present in this paper several families of pseudo
random number generators explicitly designed for use
on micro-computers. Some of these are adaptatioms
of well known generators to the micro-computer
environment, others are new or lesser known
algorithms designed to overcome some of the
restrictions intrinsic to the micro-computer”s 8 and
16 bits environments. For each generator the basic
algorithm is discussed and FORTRAN and/or Pascal
implementations for IBM-PC “s with and without the
8087 co-processor are presented. Values of
coefficients leading to pseudo random number streams
with good statistical properties are recommended and
an empirical evaluation of computational efficiency
is offered.

INTRODUCTION

The widespread availabiltiy of micro-~computers has
encouraged the implementation of micro-computer
based software that previously was only available on
larger computers. Frequently this software 1is
adapted from earlier designs for larger computers.
In some cases clever design and a heavy use of
program and data overlays are all that is needed to
"shoe~horn" these large software packages onto
smaller computers. In other cases, such as for the
class of algorithms discussed here, a fundamental
redesign of the underlying algorithms may be
required.

The most obvious reason for the failure of pseudo~
random number generators designed for larger
computers to work properly on micro-computers is the
difference in word size (down from 32 bits to 16
bits). However merely adjusting the algorithm to
reflect the reduced word size does not solve the
problem. This is because:

1) The limited word size (16 bits) seriously
limits the number of unique integers that
can be produced using conventional
congruential generators.

2) The relative speed of different arithmetic
operations is not the same on micro-
computers as on larger computers.

3) Real numbers are usually represented with
greater precision than integers (4 to 8
bytes vs. 2 bytes).

During the research leading to this paper, we
investigated the performance of thousands of
different combinations of procedures and/or
coefficients for generation of random numbers on the
IBM~PC and similar machines. Most looked promising,
but failed to perform well when subjected to the
tests discussed later in this paper. A few
performed extremely well on our tests.
Representative implementations of these algorithms
in FORTRAN-77 and Pascal are presented in the text.

!
DESIGN CONSIDERATIONS

Users of pseudo-random number generators are
concerned with the "randomness" of the numbers
generated as well as with the programming and
computational effort required to implement it. Many
trade-offs are therefore made when a specific
generator is chosen for a given application. In
this section we will briefly discuss some of these.

Fundamental Properties

The sequence of numbers generated by a pseudo-random
number gemerator is not a random sequence, rather,
it is a repeating fixed sequence of numbers that
pass many reasonable empirical tests for
"randomness". For example, a simple linear
congruential generator may generate the following
repeating permutation of the integers
between 0 and 15:

1,14,7,12,13,10,3,8,9,6,15,4,5,2,11,0,1....

The length of the repeating sequence is called the
period of the generator, and the (ordered) set of
numbers generated in a period is referred to as a
cycle. The resolutiom of a generator is the
smallest possible difference between two unequal
numbers produced by the generator.

It is desirable to have a generator with as long a
period as possible. In addition, it is desirable to
have a generator where a cycle contains multiple
occurrences of any one integer. (Without this
feature, the interval between like numbers in the
stream will be equal to the cyecle size for all
numbers in the stream.) Finally a generator of
random integers should have a resolution of one.

Computer language requirements

A competent computer programmer is able to implement
any pseudo-random number generator in almost any

188

higher level computer language. Even so, higher
}evel languages impose several restrictions on the
implementation of pseudo~random number generators.
Among the more common problems are:

l. The value of local variables (such as
seeds) might be lost between calls to a
procedure.

2, Access to individual bits or bytes of a
variable might be difficult.

3. Special purpose arithmetic or logical
operations (such as MOD or XOR) might
not be available.

4, Parameter passing is frequently time
consuming.

In this paper, we illustrate how these difficulties
can be overcome.

Statistical Properties

Even though the streams of numbers generated by
pseudo—random number generators are repeatable and
therefore are not random, our intention is to use
these numbers in lieu of truly random numbers. The
generated streams must therefore exhibit the same
behavior as truly random numbers in the application
of interest.

The concept of "randomness" embodies many different
statistical properties, and a single statistical
test is not sufficient. Instead, different
statistical tests are required for different
properties. The properties tested for in the
research reported here are:

1. Uniformity of distributiom.
2. Randomness of sequence
3. Absence of autocorrelation.

The specific tests used for each property are
discussed in [6]. Needless to say, all the
procedures and coefficients presented in this paper
yields pseudo-random number streams that pass these
tests.

INTEGER (2 BYTE) GENERATORS

The Linear Congruential Generators

The linear congruential (LC) algorithm is perhaps
the best known and most widely used procedure for
computer generation of pseudo-random integers. This
is not surprising as the algorithm is both easy to
understand and easy to code in almost any
programming language. Furthermore , the behavior ?f

LC generators for 32-bit machines has been
extensively studied and many good versions are
available in the open literature.

For 16-bit micro-computers, we are not so lucky.
The reduced word size imposes intrinsic limits on
"randomness" that are much less attractive than
those present when larger word sizes are used. It
is therefore essential that designers and users of
16-bit LC algorithms fully understand how these
algorithms work and what their restrictions are.
Designers need this knowledge to optimize the
performance of their algorithms (apparently trivial
changes can quadruple the count of unique numbers
generated), and users need this knowledge to decide
if an alternative algorithm should be used.

Arne Thesen, Zhanshan Sun, Tzyh-Jong Wang

Algorithm
The Linear Congruential algorithm produces a new
random number from the previous one through the

congruential relationship shown in Algorithm 1:

Ifi+l] = (a * I[il +¢) MOD m

where I[i] = the i-th number produced by the
generator
I[i+l] = the (i+l)~th number produced by
the generator
a,c,m = constants

Algorithm 1: Linear congruential generator.

Using this relationship, I[i+l] is computed as the
remainder of (a * I[i] + c¢) divided by m. For
example, if a =13, ¢ =1, m = 16 and I[3] = 7, then
I%Z} isl;omputed as the remainder of (13%7+1)/16 or
I = N

An important feature of LC generators is the fact
that each period contains at most one occurrence of
each of the integers in the range 0 .. (m - 1).
Therefore, the interval between any two like
integers is fixed, and the maximum period is m.

The properties of LC generators have been
extensively studied. Knuth [2] provides guidelines
for selecting the values for the coefficients a, ¢
and m and recommends specific values for large
computers. Recommended values for micro-computers
are presented later in this sectionm.

Implementation

To minimize computational effort, m is chosen to be
the largest integer that the computer can represent
+ 1 (2%*15 or 32768 on most micro-computer systems).
This has the advantage that the MOD operation in the
Linear Congruential relationship is performed
automatically when the term (a * I[i] + ¢) is formed
through integer overflow.

To minimize the importance of the initial seed, we
should generate all non-negative integers less than
m. It can be shown (Knuth [2]) that this is always
possible if ¢ and a are chosen according to certain
rules. However, note that no guarantees are made
regarding the statistical properties of the
resulting number sequence. One family of generators
satisfying these rules is:

Ifi+l] = (a * I[i]l +1) MOD m

where a = k * 4 + 1 (k= 0,1,....).

Some Efficient Random Number Generators for Micro-Computers

A Pascal implementation of this gemerator is given
in Program 1 and a FORTRAN implementation is given
in Program 2:

{ }

Function I_lcg(var seed: integer): integer;

const
mult = 3993;
begin
seed := seed * mult +1;
if seed < 0 then
seed := gseed + maxint +l;
I _lcg := seed;
end;

Program l: Two byte congruential gemerator in Pascal
C

FUNCTION ILCG(ISEED)
c

INTEGER*2 ISEED

DATA MULT/3993/,MAXINT/32767/

ISEED = ISEED * MULT + 1

IF(ISEED,LT,0) ISEED = ISEED + MAXINT + 1
ILCG = ISEED

RETURN

END

Program 2: Two byte congruential generator in
FORTRAN

Both implementations rely on integer overflow f?r
their MOD operation. While this is efficient, it
introduces two problems:

- Integer overflow may cause the sign bit to
change.

- Some systems stop execution when an
overflow condition is detected.

Programs 1 and 2 solve the first problem by
resetting the sign bit if it has been changed. Note
that this is done by adding 2%*15 (=32,767 +1) not
by multiplying by minus one. (The latter will cause
all the bits to change as two’s complement is used
to store negative numbers.)

If the second problem is encountered, it may be
solved by including compiler switches in the source
code to disable error checking. We have found some
Pascal installations where it is impossible to
disable the "abort on overflow" feature. In these
cases it usually works to define the seed as a
global variable of the type [0 .. 655351 and to
reset its leading bit if the value of the seed
exeeded 32767.

The Multiplier

A total of 8192 different values for a satisfy the
condition a = 4*k+l can be chosen for Algorithm 1.
Some of these yield "good" sequences, while others
yield "bad" sequences. For example, the following
sequence is generated if a is one:

0-1-2~3~4-5-6-7-8-9-10-11~...-32766-32767-0-1-2...

This sequence clearly has a period of m. However,
it will not pass any reasonable test for randomness.

189

As we are not aware of any method for predicting in
advance which values of a will result in "good"
sequences and which values will result in "bad"
sequences, we conducted empirical tests on the
output produced by all of the 8192 possible values
of a. Some of the values of a that were found to
yield statisically "good" sequences are listed in
Table 1.

+

589	1813	2125	2633 3993	
4773	5225	5737	5995	6061
7149	11097	11245 1 12217	20377	

Table 1: Good multipliers for 16-bit LC generators.
Remarks

Some readers may feel that a certain degree of
simplicity and computational efficiency would be
gained when ¢ is set equal to zero. However, we
should point out that such generators have only one
fourth of the period of the recommended mixed
generator. As a consequence, the generator produces
two mutually exclusive sets of odd random integers.
The actual set produced in any one run depends on
the initial seed chosen for that run. Furthermore,
the elimination of ¢ has no significant impact on
the speed of the resulting procedure.

A Tausworthe generatoxr

Tausworthe[5] has suggested a different approach to
the generation of pseudo-random integers. This
procedure, which operates directly on bits to form
a stream of random bits, has been shown to produce
random number sequences that (1) have improved
statistical properties over LC generators, and (2)
have an arbitrarly long period independent of the
word size of the computer used.

Tausworthe generators are not in widespread use.
This could be because they are difficult to
implement efficently in a higher level language, or
because their improved statistical properties are of
marginal utility on larger computers. On micro-
computers, the situation is quite different. Here
the improvement in period length and in statistical
properties is quite substantial, and, well written
Tausworthe generators are not necessarely more time
consuming than other classes of generators.

Algorithm

?he‘basic procedure of a Tausworthe type gemerator
is illustrated in Figure 1:

Bli~p] Bli-rl B[i]
B=, . T LT S ST
[-

+==>%01 <——+ |

Figure 1: Relationship between bits in a Tausworthe
generated bit stream.

Here P is'defined as a sequence of bits, and the
yelat19nsh1p between individual bits in the sequence
is defined in Algorithm 2:

190

B[i] = B[i-r] XOR B[i-p]

where: i = any integer,
r , p = fixed integers with 0<r<p.
XOR =the exclusive OR operator

yielding 0 if the terms are
equal and 1 if they are not

Algorithm 2: Tausworthe generator

When r and p are properly selected (as primitive
trimodals [8]), the maximum period of the stream (B)
is 2%%p - 1,

Implementation

In Program 3 we present a FORTRAN implementation of
the Tausworthe based on an idea first proposed by
Lewis and Payne [3]. To avoid the need to access
individual bits, the algorithm maintains 15
independent and parallel streams of bits, and the
exclusive OR operation is performed om all bits at
once. Since each of the independent bit streams
have .a period of 2**p - 1, the resulting stream of
integers will also have a period of 2%%p - 1.

C

INTEGER*2 FUNCTION IXOR(FIRST,SECOND)
C

INTEGER*2 FIRST,SECOND,F1,S1,F2,82,
* XY

LOGICAL*2 ¥Fl,SS1,FF2,852,%XX,YY

CHARACTER*1 CF1(2),Cs1(2),CF2(2},
* ©s2(2),cx(2),cY(2)

EQUIVALENCE (F1,FFl),(s1,ssl1),
* (F2,FF2),(s2,882),
* (X,Xx),(Y,YY)

EQUIVALENCE (F1,CF1(1)),(s1,cs1(1)),
* (F2,cr2(1)),(82,c52(1)),
% (x,cx(1)),(x,c¥(1))

DATA MAXINT/65535/

F1=FIRST

$1=SECOND

F2=MAXINT-F1

S2=MAXINT-S1

XX=FF2.AND.SS1.0R.FF1.AND,S82

CF1(1)=CFr1(2)

CF2(1)=Cr2(2)

€81(1)=cs1(2)

©s2(1)=cs2(2)

YY=FF2.AND.SS1.0R.FFL .AND.SS2

cx(2)=cY(1)

IXOR=X

RETURN

END

BLOCK DATA INTTABLE

COMMON/TABLE/ITABLE(98)

DATA ITABLE/
12367,23891,31506,18710,195,22840,
8267,18890,30239,24237,12578,604,
10782,30128,25410,7,18271,21141,
12085,25438,2395,8854,23562,32544,
5796,10976,14721,24781,9690,31984,
23409,3957,14721383,17222,5234,
18963,29006,18273,9815,31802,
19161,28282,14975,25973,32605,141,
30030,7767,29294,9884,19885,27311,
4209,19675,9596,1052,23999,9052,
13660,31035,6578,28125,18883,
10482,5735,13025,24226,32043,82,
20418,13570,32554,99,12326 ,30454,

% % ok ok % S ok ¥ % ¥ F % *

Arne Thesen, Zhanshan Sun, Tzyh-Jong Wang

19576,15552,20577,12124,26038,

4142,32092,11825,5482,26736,23403,

31196,2762,14193,22213,10746,

24414,31884,11266,579,29011,2262/
END

A % ¥ F

FUNCTION ITAU(IFIRST)

INTEGER*2 IFIRST,S,M,N
COMMON/TABLE/ITABLE(98)
IF (IFIRST.LT.0) IFIRST=0
IFIRST=IFIRST+l

IF (IFIRST.GT.98) IFIRST=1
S=IFIRST+27

IF (S.6T.98) S=1
M=ILTABLE(IFIRST)
N=ITABLE(S)
ITAU=ITABLE(IFIRST)
ITABLE(IFIRST)=IXOR(M,N)
RETURN

END

Program 3: FORTRAN implementation of a Tausworthe
generator of pseudo-random integers.

Three program segments are included in Program 3.
The function ITAU(IFIRST) is the actual generator
implementing Algorithm 2. Its parameter "IFIRST" is
subscript of the array of bits (ITABLE) maintained
by the procedure. Its value should not be
initialized or changed by the user. The block data
segment initializes the same array. Again no changes
should be made by the user. Finally the function
IXOR is our FORTRAN implementation of a bitwise xor

operator. The speed of the procedure is improved by
approximately 504 if when this function is recoded
into assembly language. However the resulting code
would not be very portable.

Shuffle Generators

Shuffle generators combine two or more independent
generators to produce a single random number
stream with (hopefully) improved statistical
properties. Of course, this improvement (if any)
comes at the cost of reduced computational
efficiency. Many elaborate shuffling algorithms
have been proposed. The key to success for any of
these is the requirement that the driving generators
must have periods that are relative prime.

The shuffle algorithm presented here is adapted from
Knuth [2]. As shown in Algorithm 3, an internal
table of pseudo-random numbers is maintained.
Whenever a random number is requested, a random
index is generated, and the random number stored at
the corresponding location in the table is returned.
This entry is then replaced by a new number using
the other random number generator.

Step 0 : Initialize

for index := 1 to MaxIndex do
Tablelindex}] := Irandoml(0,MaxInt);

Step 1 : Draw a random subscript

index := Irandom2(l,MaxIndex)

Some Efficient Random Number Generators for Micro-Computers

Step 2 : Obtain value stored at this location
Irandom := Tablelindex]
Step 3 : Replace this value

Table[index| := Irandoml(0,MaxInt)

where : index = a random subscript
Irandom = the resulting random integer
Irandoml = generates random integers
Irandom?2 = generates random integers
MaxIndex = the size of Table
Table = an array of random integers

Algorithm 3: Knuth”s shuffle algorithm

The resulting procedure (Program 4) produces random
number streams of quite (Knuth says exceptionally)
long periods.

FUNCTION ISELECT (I)

INTEGER*2 ISEED,I
CHARACTER*1 BYTE(2)
EQUIVALENCE (ISEED,BYTE(1))
DATA MULT/6061/,IPRIME/32749/,MAXINT/32767/
ISEED=1

1000 LSEED=ISEED*MULT+1
B(2) IS NOW IN RANGE 0..255
IF (ISEED.LT.0) ISEED=ISEED + MAXINT + 1
B(2) IS NOW IN RANGE 0..127

[«]

FORCE DIFFERENT PERIOD

[+ N NeNel

IF (ISEED.GE.IPRIME) GOTO 1000

ISELECT=ICHAR(BYTE(2))
I=ISEED

RETURN

END

FUNCTION ISHUF(ISEED1,ISEED2,INIT)

COMMON/TABLE/ITABLE(128)

INTEGER*2 ITABLE,ISEED1,ISEED2,INIT,INDEX

IF (INIT.EQ.1) THEN
INDEX=ISELECT(ISEED2) + 1
ISHUF=ITABLE(INDEX)
ITABLE(INDEX)=ILCG(ISEED1)
RETURN

ENDIF

DO 1010 INDEX=1,128

1010 ITABLE(INDEX)=ILCG(ISEED1)

INIT=1

RETURN

END

Program 4: Two byte shuffle generator. INIT must
have a value of zero when ISHUF is
called for the first time.

The tvo driving generators used in this procedure
are ILCG (Program 2) and ISELECT (Program 4).
ILCG determines the actual values produced by the
generators, and ISELECT determines the order in
which they are returned. ISELECT is an example of a
random byte generator. Note that ISELECT ‘has an
extra step inserted to force a period other than the
default of 32768. Random byte generators are further
discussed in the following section.

19

SINGLE BYTE GENERATORS

The byte is the basic information buildimg block in
a micro~computer. Iwo adjacent bytes are used to
represent an integer and four to eight adjacent
bytes are used to represent a floating point number.
An application of a random byte gemerator was shown
in the previous section where such a generator was
used to produce subscripts in the ramnge 0 .. 127. In
a later section, we will show how to construct
random deviates of more complex types from a stream
of random bytes.

A Comgruential Generator

While is is easy to develop an LC generator
operating on a single byte, the short period of the
resulting stream of numbers causes such a generator
to have limited value.

For satisfactory results we will therefore produce
random bytes from a stream of LC generated integers.
It is tempting to develop a procedure that first
uses the higher order and then the lower order
byte of the integer. This is extremely dangerous as
the guarantee of randomness for an integer does not
extend to the bytes that make up that integer. In
particular the lower oxder byte of an integer
produced by a LC generator is likely to exhibit
extremely poor statistical properties. However, if
the multiplier is carefully chosen, it is possible
to obtain a stream of random bytes by returning the
high order byte (only) of a random integer).
Function ISELECT in Program 4 is a FORTRAN
implementation of a byte generator returning the
higher order byte of a positive integer. (Note that
the resulting byte is in the range [0 .. 1271). A
Pascal implementation of a byte genmerator returning
bytes on the range L0 .. 255] is given in Program 5.

(* var
seed : record
case integer of

1: (int : integer) ;
2: (lsbyte : byte ;
msbyte : byte) ;
end ; *)
function RByte : byte ;
const
Multiplier = 3993 ;
begin
seed.int := Multiplier * seed.int + 1 ;
RByte := seed.msbyte ;
if seed.int < 0 then
seed.int := seed.int + maxint + 1 ;

end ;
Program 5: Congruental generator of random bytes

Here the external seed for the congruential
generator is of type integer. This seed is
immediately copied to an internal variable that is
"EQUIVALENCEd" to be both an integer and an array of
two bytes. The standard congruential operations are
performed on this internal variable. Then its most
significant byte is captured and the new seed value
is copied to the externally defined integer.

A Tausworthe Generator

In Program 3 we showed that a random integer could
be developed from fifteen parallel random bit
streams using a Tausworthe generator. Since the

192

underlying algorithm was not constrained by the word
size of the computer used, we can easily modify it
to generate a random byte from eight parallel
streams of random bits. Due to the simplicity of
this extension, we will not provide a FORTRAN
implementation at this time. Instead we show in
Program 6 how such an algorithm can be implemented
in Pascal. In this implementation we exploit the
fact that our Pascal compiler (TurboPascal) provides
a built-in xor operator. The procedure differs
further from Program 3 in that a separate
initialization routine is used to generate initial
values for the byte table and the offset pointers.

(* const
pminusl = 97 ; {p =98 ; q = 27 }

var
ByteTable : array[0..97]of byte ; *)
procedure Taulnit(var f£,s : integer) ;
var
BitIndex,count : integer ;
WorkTable : arrayl0..97]of byte ;
begin
for count := 0 to 97 do
begin
ByteTable[count] :
WorkTable[count] :
end
£ := pmunusl ;
s = 26 ;
for BitIndex := 1 to 16 do
begin
for count := 1 to 9800 do
begin
if £ < pminusl then
£fi=£+1
else
£ :=0;
if s < pminusl themn
g =35 + 1
else
s :=0 3
ByteTablelf] :=
ByteTable[f] xor ByteTablels] ;
end ;
if BitIndex > 8 them
for count := 0 to 97 do
begin
if 0dd(ByteTablelcount]) then
WorkTablelcount] :=
(WorkTablelcount] div 2) + 128
else
WorkTablelcount] :=
WorkTable[count] div 2 ;
ByteTable[count] :=
ByteTablelcount] div 2 ;
end ;
end 3
for count := 0 to 97 do
ByteTable[count] := WorkTable[count] ;

£ := pmunisl ;
s =26 ;
end ;

Arne Thesen, Zhanshan Sun, Tzyh-Jong Wang

function RByte(var f,s : integer) : byte ;
begin
if £ < pminusl then

£fi=f+1
else
£ =03
if s < pminusl then
s =8 + 1
else
s =0 ;

RByte := ByteTable[f] ;
ByteTable[f] := ByteTable[f] xor ByteTablels] ;
end 3

Program 6: Tausworthe generator of random bytes.

LONG INTEGER (4 BYTE) GENERATORS

Congruential Generators

The LC generator has been proven to give
satisfactory results for computers capable of
performing 32-bit arithmetic in hardware. This is
not yet possible on micros. However, it is possible
to emulate 32~bit arithmetic in software. We will
review two possible approaches. Unfortunately
neither of these yield entirely satisfactory
results.

The most appealing approach is to exploit the fact
that the standard word size in FORTRAN-77 is four
bytes. One would therefore think that our Standard

_ FORTRAN~77 compiler should automatically solve our

problem. Not so. This is because long integer
overflow unfortunately results in a bit string of
ones rather than in the least significant bits of
the answer. The situation is even more difficult
when Pascal is used, as our Pascal compiler does not
even support long integers.

In Program 7/ we present an implementation of a four
byte LC generator that overcomes these problems.

c

FUNCTION ILONG(ISEED)

d
INTEGER*4 A,PRIME,ISEED,BIT15,BIT16
INTEGER*4 XHI,XLO,LLO,FHI,K
DATA A/16807/,BIT15/32768/,BIT16/65536/
DATA PRIME/2147483647/

XHI = ISEED / BIT16

XL0 = (ISEED-XHI*BIT16) * A
LLO = XLO / BITI6

FHI = XHL * A + LLO

K = FHI / BIT15

ISEED = (((XLO-LLO*BIT16)-PRIME)+

1 (FHI-K*BIT15)*BIT16)+K
IF(ISEED.LT.0) ISEED = ISEED + PRIME
ILONG = ISEED

RETURN

END

Program 7: Congruential generator of 4 byte integers

Due to Schrage [4], program 7 avoids integer
overflow by (1) comverting the four byte seed to two
2 byte integers, (2) performing the congruential
operations on these integers, and (3) combining
these to form a'new long integer. An added feature
of Program 7 is the fact that it takes the modulus
of the largest prime the computer can represent
rather that of the largest number it can represent.

Some Efficient Random Number Generators for Micro-Computers

This has the potential of improving the statistical
quality of the resulting random number stream. Our
evaluation of Program 7 confirms the fact that it
yields integers with good statistical properties.

FLOATING POINT GENERATORS

Conventional procedures

Real valued random deviates are readily obtained
from integer deviates by mode conversion (from
integer to real) and by scaling (from 0.0-32767.0 to

0.0~1.0). One such procedure is illustrated in
Program 8.
[
FUNCTION UNIF(ISEED)
C

INTEGER*2 ISEED

DATA MULT/2125/ ,MAXINT/32767/

ISEED = ISEED % MULT + 1

IF (ISEED.LT.0) ISEED = ISEED + MAXINT + 1
UNIF = ISEED * 3.051851E-5

RETURN

END

Program 8: Congruential generator for variables on
[0.0 - 1.0]

Note that the floating point number is produced from
the integer by multiplying by a constant equal to
1/32767. This is a substantially faster uperation
than the more obvious step of dividing by 32767.

Two serious problems restrict this program’s
usefulness for micro-computers:

1) Floating point arithmetic is particularly
slow on most micro-computers. Program 8
is about 4 times slower than its integer
counterpart.

2) Most micro-computer languages use four
bytes to store a floating point number
while they use only two bytes to store an
integer. Program 8 has inherited the
cycle and period restrictions of our two
byte integer generators.

In the following section, we present a different
approach to the generation of floating point random
numbers that overcomes these problems. This
procedure is discussed in more detail in [7].

A Comstruction Algorithm for Floating Point Deviates

A random variable u on [0~1) can be expressed as a
function of a random exponent e and a random
mantissa m as follows:

= e
u = - %2
M
Where u = random variable on [0-1)
e= random variable drawn from the

geometric distribution with mean 0.5.
M = a constant
m = Uniformly distributed random variable on
[M/2,%).

193

An procedure exploiting this notational convention
to genetate numbers on [0.0 - 1.0) is presented in
Algoritm 4:

I. INITIAL ASSIGNMENTS

e=0 (Correct value if u > 1/2)
m = U(0,M) (Uniform deviate on 0-M)

II. IS ADDITIONAL WORK REQUIRED?

If m >= M/2 (this happens half the time)
then go to step IV
else m = m + M/2 (mantissa must be > M/2)

III. ADJUST EXPONENT

A. Draw random byte(s)
until a nonzero byte is found:

k = RandomByte

while k = 0 (this happenswith a
probability of 1/256)

e -8

RandomByte

e
k

nou

B. Scan the byte for the first nonzero bit:

while k < 128
k=% %2
e=e~-1.

IV. RANDOM VARIABLE IS u = f(e,m)

Algorithm 4: Building u from e and m

The algorithm starts out by assigning a value of
zero to the exponent and a random value to the
mantissa (defining a number on [0.5 .. 1.0)). A
check is made to see if the resulting mantissa has a
valid value (there is a 50% probability that this is
true). If so, the algorithm stops as a valid number
has been produced.

If the mantissa is not valid (i.e. it is less than
M/2), then M/2 is added to m to make it valid, and a
procedure for generating the random exponent
required for numbers in the range [0.0 .. 0.5) is
entered. This procedure exploits the fact that the
number of bits preceding the first bit with a value
of one in a stream of random bits follows the
geometric distribution with p = 0.5. Random bytes
are drawn until a nonzero byte is found. The
resulting exponent is computed as the negative value
of eight times the number of zero valued bytes plus
the number of consective zero valued bits in the
last byte.

Implementation
Our implementation of algorithm 4 is based on the
IEEE standard[1l] for representation of floating

point numbers shown in Figure 2:

bit: 31 30 ... 23 22 e 0

content: |[SignlBiased expon.|mantissa less lst bit |

Figure 2: IEEE Standard for floating point represen-—
tation. Note that the leading bit of the
mantissa is omitted as it is always a one.

194 Arne Thesen, Zhanshan Sun, Tzyh-Jong Wang

For numbers between zero and one, the sign bit is
zero. The biased expoment is 126 if the number is
between 1 and 1/2; it is 125 if the number is
between 1/2 and 1/4 etc. Bits 0 .. 22 represents the
23 least significant bits of the 24~bit mantissa.
For a random variable between 0 and 1 , these bits
have an equal likelihood of being zeros or omes. The
most significant bit of the mantissa is omitted as
it always has a value of one.

Our implementation of a FORTRAN algorithm exploiting
this data structure is shown in Program 9. This
subroutine follows Algorithm 4 closely. The only
difficulty in implementation arises from the fact
that the boundary between the eight bit exponent and
the mantissa is not on a whole byte boundary. This
problem is solved by treating those seven bits of
the exponent that resides in byte(4) separately from
the bit that forms the most significant bit of byte
(3). It should be clear from the program annotation
how this solves the problem. In Program 10 we give
the equivalent Pascal implementation of Algorithm 4.

c

FUNCTION UNIF(ISEED,JSEED)
C

INTEGER*2 ISEED,JSEED,IEXPO
CHARACTER*1 B(4),RBYTE
EQUIVALENCE (X,B(1))

G FILL MANTISSA, SET BITS 2-8 OF EXPONENT

CALL RANDOM(ISEED,B(1))
CALL RANDOM(ISEED,B(2))
CALL RANDOM(ISEED,B(3))
IEXPO = 63

C EXPONENT BYTE IS NOW 127 OR 126, QUIT IF 126
IF (B(3).LT.128) GOTO 1030

C LEAST SIGNIFICANT BIT OF EXPONENT IS A ONE
C FIND NON ZERO RANDOM BYTE

IEXPO = 66

1010 CALL RANDOM(JSEED,RBYTE)
IEXPO = IEXPO - 4
IF (RBYTE.EQ.0) GOTO 1010

C EXPONENT BYTE IS IN [125, 117, 109, ...l
C SCAN RBYTE FOR FIRST NONZERO BIT

IF (RBYTE.GT.127) GOTO 1030
IF (RBYTE.GT.63) GOTO 1020

C SUBTRACT 2 FROM EXPONENT BYTE
IEXPO = IEXPO - 1
IF (RBYTE.GT.31) GOTO 1030
IF (RBYTE.GT.15) GOTQ 1020

C SUBTRACT 2 FROM EXPONENT BYTE
IEXPO = IEXPO - 1
IF (RBYTE.GT.7) GOTO 1030
If (RBYTE.GT.3) GOTO 1020

C SUBTRACT 2 FROM EXPONENT BYTE
IEXPQ = IEXPO - 1
IF (RBYTE.GT.l) GOTO 1030

C LEAST SIGNIFICANT BIT OF EXPONENT IS ZERO
1020 BE3) = CHAR(ICHAR(B(3)) - 128)

1030 B(4) = CHAR(IEXPO)
UNIF = X
RETURN
END

Program 9: FORTRAN-77 implementation of the generator

Discussion

While a tixed number of random bytes are always used
to generate a random mantissa, the number of bytes n
used to generate a random exponent is itself a
random variable. It can be shown that the
distribution of n is:

p(n=i) {1/2 for i=0

i
pln=i) = { 255 % (1/256) / 2 for i = 1,2,3,....
and the expected value n is 128/255 = 0,5019607.

Separate random number streams must be used for the
exponent and the matissa. Programs 9 and 10 give
poor results when a single stream is used for both.

(* var { copy this global declaration as ist!}
u : recoxrd case integer of
1: (unif : real) ;
2: (m3 : byte;
m2 : byte;
ml : byte;
exponent : byte);
end ; *)
function uniform :
var
k : byte ;
begin
with u do begin
m3 := RBytel ;
m2 := RBytel ;
ml := RBytel ;
exponent := 63 ;
if ml >= 128 then begin
exponent := exponent - 1 ;
k := RByte2 ;
while k = 0 do begin

real ;

exponent := exponent - 4 ;
k := RByte2 ;
end ;

if k < 128 then
if k >= 64 then
ml :=ml + 128

else
if k >= 32 then
exponent := exponent - 1
else

if k >= 16 then begin
ml :=ml + 128 ;
exponent := expoment - 1 ;

end
else
if k >= 8 then
exponent := exponent - 2
else

if k >= 4 then begin
ml :=ml + 128 ;
exponent := exponent - 2 ;
end
else
if k¥ >= 2 then
exponent := exponent - 3

Some Efficient Random Number Generators for Micro-Computers 195

else begin
ml :=ml + 128 ;

exponent := exponent - 3 3
end ;
end ;
uniform := unif ;
end ;
end ;

Program 10: MS-Pascal implementation Algorithm 4.
EVALUATION

All the generators presented here were subjected to
extensive performance tests. This included
statistical tests for distribution, sequence and
autocorrelation. All of the generators presented
here passed all of these tests. The reader is
refered to [6] and [7] for further information.

The generators were also subjected to extensive
timing tests. These tests were performed by
measuring the time required to generate 32,000
random numbers on two IBM-PC's one with and one
without the 8087 co-processor. The results of these
are summarized in Tables 2 and 3.

The reader is warned against reading too much into
minor differences in execution times. Such
differences are as 1likely to be caused by
differences in programming styles and data transfer
methods as by imtrinsic algorithmic performance
differences. For example we found that the
Tausworthe byte generator (Program 6) performed
three to four seconds faster in our tests when the
resulting byte was maintained as a global variable
rather than returned through the function.

A somewhat unexpected result was the fact that the
8087 numeric co-processor does not significantly
improve the speed of any of the integer generators.
We have verified the fact that this is because our
compliers do not use the powers of the 8087 to
perform integer arithmetic.

| | Congruential | Tausworthe | Shuffle |
| + + + + + + +
| |FORTRAN | Pascal [FORTRAN [Pascal |FORTRAN|Pascall

IBytel 7 | 6 | 15 | 8 | 19 | 24 |
l1*2 | 7 | 8 | 21 | 8 | 17 t 24 |
|l1*4 1 61 | na | 29 | na | 24 | na |

Table 2: Time to generate 32,000 integers on IBM~-PCs
using different algorithms. Note that the
8087 co-processor does not improve
execution speed.

Table 2 summarizes the run times for our integer
generators. We note that the simple congruential
generators were consistently faster than the other
generators. Users not concerned with the short
period of these generators will therefore do well
with Programs 1 or 2 as their main source of pseudo-
random integers. Pascal users concerned with the
short period of these generators may want to use a
Tausworthe generator (Program 6) while FORTRAN users
may want to use a shuffle algorithm (Program 4).

+

| 8088 | 8087]

|FORTRAN [Pascal |FORTRAN | Pascal |

ICongruentiall 48 | 102 | 10 | 17 |
|Build I 26 | 171 26 | 17|
|Shuffle i 59 | 1191 22 | 381

Table 3: Time to generate 32,000 random floating
point numbers using different algorithms.
Note that the 8087 substantially improves
execution speed.

Table 3 summarizes the run times for the floating
point generators. We now observe a significant
improvement in the performance of most algorithms
when the 8087 is used to perform floating point
arithmetic. However, algorithm 4 which does not use
the 8087 was found to be the fastest procedure for
both FORTRAN and Pascal implementations if the 8087
is not available. This is exciting, as the resulting
random number stream has substantially better
statistical properties than the conventional LC
generator. FORTRAN users with access to a machine
with an 8087 will save some time if they use the LC
generator (Program 8). Pascal users will mnot gain
speed by making this switch.

Conclusion

This paper presents the finding of an extensive
evaluation of thousands of different combinations of
algorithms and constants for micro-computer based
random number generators. All of the generators
presented here have been shown to pass reasonable
tests for uniformity of distribution, randomness of
sequence and absence of autocorrelation. In
addition each generator dominates the others in at
least one of the dimensions of speed, period and
portability.

We had expected to observe a tradeoff between speed
and "randomness", however, no such relationship was
observed. In fact the fastest generator of floating
point numbers also exhibited the longest period. We
also had expected to observe a strong relationship
between programming style and computational
efficiency. This expectation was confirmed. Clever
use of nonstandard language features improves speed.
Likewise, the manner in which data is transferred to
and from the procedures has a significant (15% up to
30%) effect on relative performance. Finally we were
surprised to learn that the 8087 co-processor does
not improve the efficiency of our integer generator.

However, we feel that the most important lesson
learned from this study is the fact that we were
completely unable to predict in advance whether or
not a given algorithm would exhibit good or bad
statistical properties. The likelihood of improving
an algorithm through ad hoc changes are slim at
best.

196 Arne Thesen, Zhanshan Sim, Tzyh-Jong Wang

BIBLIOGRAPHY

1. 1Intel Corp., 8232 Arithmetic Processing Unit,
Preliminary Data Sheet, 198l.

2. Knuth, The Art of Computer Programming.
Addison-Wesley, 1969.

3. Lewis, T.G. and Payne W.H., Generalized
Feedback Register Pseudorandom Number
Generator. JACM vol. 20, no. 3, July 1973.

4. Schrage,h., A More Portable Fortran Random
Number Generator, ACM Transactions on
Mathematical Software, pp 132-138, 1979.

5. Tausworthe, R.C., Random Numbers Generated by
Linear Recurrence, Modulo Two, Math. Comput. 19
(1965) 201-209.

6., Thesen, Arne, An Efficient Generator of
Uniformly Distributed Random Deviates Between
Zero and One. Technical Report. Mathematics
Research Center, University of Wisconsin-
Madison, 1983. To appear in Simulationm.

7. Thesen, Arne and Tzyh-Jong Wang, Some
Efficient Random Number Generators for Micro
Computers MRC Technical Summary Report #2562
Mathematics Research Center, University of
Wisconsin~ Madison, 1983.

8. Zierler, Niel and John Brillhart, On Primitive
Trinomials (Mod 2), Information and Control,
Vol. 13 pp 541-554, 1968.

