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ABSTRACT

Continuous simulations of queueing networks avoid
the statistical sampling problems caused by Monte
Carlo operations. Also, one may want to simulate a
queueing network as part of a larger continuous
simulation. The network considered in this paper is
nonstationary, has time—dependent exponential
service time, and finite queues which block upstream
service if they are at capacity. One approach to
simulating the network is to define the entire set
of Kolmogorov equations and numerically integrate
them. This is impractical because the number of
equations is quite large even for modest networks.
This paper presents two continuous simulation
approximations to the exact solution that reduce the
number of equations to be integrated to a manageable
number. The independence approximation assumes that
the probability of a particular system state is
approximated by the product of the probabilities
each queueing station assumes a particular state.
The partition approximation groups states for each
queueing station into subsets and uses a weighting
factor applied to joint probabilities calculated
under the independence assumption. Results from an
illustrative example show that partition
approximation is more accurate than the

independence assumption; however, the independence
approximation does very well.

INTRODUCTION

Two different reasons motivate the use of continuous
simulations of queueing networks. The first is that
a continuous simulation avoids Monte Carlo sampling
and the resultant statistical analysis problems.

The potential requirement for tremendous sample
sizes in order to estimate mean values accurately is
well known [1]. No matter how detailed the
discrete—event Monte Carlo simulatiom, it is
inherently a numerical approximation because of the
sampling errors introduced by Monte Carlo sampling.
Thus, any errors in a continuous simulation
approximation to a queueing network may be offset by
the sampling errors inherent in Monte Carlo
simulation.

The second reason is that the queueing network may
be a subsystem in a larger continuous simulation.
Imagine a jobshop that is modeled as a network of
queues that is part of a larger manufacturing
capacity-marketing system dynamics model [2]. Note
that the system dynamics models are actually
continuous simulations. Another example would be
the use of several servers in tandem to handle
incoming requests for stock at a warehouse which is
part of a larger physical distribution system model
that is a continuous simulation.

We can relate the use of a continuous simulation of

a queueing network to the concept of a delay used
in system dynamics models. Delays represent
processes requiring elapsed time before system
quantities or entities change state [3]. DYNAMO
[2] uses the nth order exponential delay to depict
delays. A first-order exponential delay is
equivalent to the solution to a queue with a
time—dependent Poisson arrival process, an
unlimited number of servers, and independent
service times from the same negative exponential
distribution [4]. Thus, we can think of a
first—order exponential delay as a nonstationary
M/M/> queue. An nt! order exponential delay
describes a queue with an unlimited number of
identical servers having nt? order
Erlang—distributed service times, i.e., a
nonstationary M/E,/* queue. Clark [5] defined a
queueing delay having a time—dependent Poisson
arrival process, s servers, negative exponential
service times, and an unlimited waiting line, i.e.,
a nonstationary M/M/s queue. Moreover, Clark
showed how this queueing delay could be
approximated efficiently in a larger continuous
simulation. This paper considers queueing delays
made up of a network of queues with finite
capacities for their waiting space.

This paper presents two continuous simulation
approximations to a queueing network as defined
below. The approximations are capable of computing
such performance measures as the mean and variance
of the number of entities at each station in the
network, the expected output rate at each station,
and the average waiting time during the entire
simulation time period at each station.

System Represented

The system represented consists of I stations, each
one of which has sj servers and a queue permitting
at most my-pj entities where i=1,2,...,I. Thus

the maximum number of entities permitted at station
i is my including the entities being served. A
station at capacity blocks service for any entity
in service destined for the station at capacity.
The probability an entity leaving station i goes
next to station j is T4s. Note that this
probability is independent of the path taken by the
entity to reach station i. The probability that an
entity leaving station 1 departs the system is

Tise
i
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Tios and Ti, 1s equal to 1-
J

External arrivals can occur to any station and
their arrival processes are time—dependent Poisson
processes with rate functions Aj(t) for i=l1,2,...I.
If an external arrival occurs to a station at
capacity, the arrival leaves the system

immediately. Individual servers have time-dependent
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negative exponential service time distributions with
Hi(t) being the individual server service rate at
station i.

The above description specifies a Jackson network
[6] with the exceptions that the system is
nonstationary, the queues have finite capacity, and
queues at capacity block service at upstream
stations. This means that the probability of a
particular system state is a more complex function
than simply the product of the probabilities that
the individual stations are at specified states.

KOLMOGOROV EQUATIONS

The system as defined above is a Markov process;
thus, we can use the Kolmogorov forward equations
which are simultaneous differential equations
involving the probabilities of being in each
individual system state. When integrated
numerically, the solution provides us with a means
for calculating time trajectories for our desired
output performance measures. In fact, Pritsker {7]
suggested that we can simulate Markov queueing
systems using Kolmogorov equations,

We can formulate these Kolmogorov equations using
the procedure described by Kleinrock [8]. His
procedure is readily extended to portray
time-dependent arrival rates and service rates by
substituting XA;(t) and p;(t) for the constant
coefficients A; and uj.

We define the following notation in order to specify
the Kolmogorov equatioéns. Let

nj = number of entities at station i
n = (n1,09,4e0,n7)

ng =1

eq = (n3=0, np=0,...,0;7=0, n;=1,

ni+l=0’ coe ,11.1=0)

1 if O<ndmy
gi(n) =

0 if otherwise
go(n) = 1 for alln

pisy if my>ndsy
hi(n) ={pin if pi>n>l

0 if nd>my or n<0
pr(ﬁ,t)= probability the system is in the
state n at time t.

The derivative of the probability of being in the
state n at time t is the sum of three quantities or

pr'(1,t) = ~r1(d, t)rs (W, t)+ry(n, ), ¢))

where r;(nm,t) = instantapeous rate at time t_
the system leaves the state n

ra(nm,t) = instantaneous rate at time t_
the system enters the state n
due to an external arrival

r3(ﬁ;t) = instantaneous rate at time t_
the system enters the state n
due to a completed service.

We can write equation (1) because the chance of two
or more events in a Markov process is negligible
[8]. To calculate ry(m,t) we simply sum the
expected arrival rates to each station that place
us in the state n by one arrival at time t. That
is,

I
ry(m,t) = g_lXi(t)gi(ni~l)pr(ﬁ;ei,t) 2

We calculate r3(ﬁ}t) by summing the expected rates
placing the system in the state n at time t by a
completed service. Thus,

1 I
r3(’.[-1-,t) =z hi(ni-l-l)}: Tijpr('r_1-+ei—ej,t)gj(nj-l) (3)
i=1 j=0
j#i

Finally, the instantaneous rate the system leaves
the state n involves the sum of the expected rates
of having an arrival or a service given the system
is in the state n at time t. That is,

I I
r(m,t) = p(,t) {1 Apg(ngdH) Ti(ni)

i=1 i=
1
Z 15383 (ny)
3=0
j#i (4)

By numerically integrating (1) we can simulate the
queueing network and the only errors involved would
be those due to numerical integration. This is
only practical for very small networks since a
Kolmogorov equation is required for each possible
system state. If E; is the total number of
equations integrateg, then Eq is given by

I
Eq =7 (mg+l), )
i=1

which grows very quickly with both I and my. For

example, if mj=my=m3=50 and I=3, than Eq is
132,651,

INDEPENDENCE APPROXIMATION

The independence approximation is one way of
reducing the number of equations integrated to a
manageable number. This approximation assumes that
the joint probability of the system being in a
particular state is the product of the individual
probabilities each station is in a particular
state. That is,
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=]

pe(m,t) = 1 pp(Ni=nj,t), (6)
i=1

where pp.(Nj=nj,t) = probability station i has Nj
entities at time t.

The Jackson network suggests this approximation
because (6) would be exact if it were not for the
nonstationarity, the finite capacity of the queues,
and the blocking.

To reduce the number of equations integrated, we
derive differential equations giving the marginal
probabilities of the system state at one station by
summing over all possible states at the other
stations. That is,

pr' (Nj=u,t) = § p."(m,t). (7)
n
ni=u

After evaluating (7) we are left with
I
Eq = § (mytl) (8)
i=1

equations that characterize the network. To
illustrate the marked reduction, the independence
approximation reduces the 132,651 equations for a
three station capacity 50 network to 153 equations.

In integrating (7) we use the approximation given by
(6) in order to evaluate probabilities involving
more than one station. An interesting observaiton
about (7) is that the probabilities involving
multiple stations involve no more than two stationms,
and the joint probabilities appearing on the right
hand side of (7) are those of the form
pr{Ns=u,Np=v,t) where u is restricted to

0,1, ,...,sj-l and my.

PARTITION APPROXIMATION

We defined an approximation called the partition
approximation in order to improve on the indepen-
dence approximation and yet have substantially less
equations to integrate simultaneously than given by
(5). The partition approximation approximates joint
probabilities of the form pr(Ni=u,Nj=v,t), where

u=0,1,2,...,my

v 0,1,2,...,mj

This approximation requires one to partition the
state space for the number of entities at a station
into mutually exclusive subsets, at station i

let aj 1 be the kth such partition where

%4,k = {li,k<“<ui,k} k=1,2,...,K3.

Then 1;,k is the lower limit on state variables for
the ktl11 partition and uj j is upper limit. We also
require these partitions'to be collectively
exhaustive and mutually exclusive. Thus

Ki
U ok = {0,1,2,...,mi}

ai,kr1ai,s = ¢ for k#s
To calculate approximations to joint probabilities
we need to define two probabilities. Let Q(i,k,t)
be the marginal probability that N; is in the kE
partition at time t and R(i,k,j,o0,t) be the joint
probability rhat N; is in its kM partition and Ny
is in its oth partition at time t. That is,

Qi,k,t) = Pr(Nieai)kyt)

R(i,k,j,o,t) = pr(Nisai,k,Njeaj’o,t)

Also let Kj(u) = the partition containing the state
u for Nj. That is,

ueai’ki(u)
The partition approximation is
pr(Ni=u,Nj=v,t) =

Pr(Ni=u, )R(i,ky(u),] by ki (v),£)p(Ns=v,t)
A, G (), 0 Ky (1 £ ©

Note that the partition approximation is equal to
the independence approximation modified by the
weight

R(i,K;(u),j,Ki(v),t)
Q(i’Ki(u):t)Q(j:Kj(V)’t) .

One can prove that the partition approximation
satisfies the axioms of probability in that the sum
of all probabilities for the bivariate distribution
equals 1.

Based upon an analysis of several cases involving a
two station network, we selected the following
partitions. 1In this case, the partition is an
ordered pair for station (i,j) instead of being the
same for each station. First station i has a
single partition where Nj<s;—=l. Next, station j
where j#i, has six subsets where

a3,1 = {0}

ag,2 = {1,2,3}
ag,3 = {4<N4<8}
aj,4 = {9<N;5<15}
ag,5 = {16<N;<24}
aj.6 = {nj>25}

Of course, station j does not require all six
subsets 1if n5<25. The implementation only used the
approximation for probabilities of the form
pr(Ni=u,Nj=v,t) where u<sy~l. All other
probabilities involving multiple stations were
approximated using (6). Using six subsets for
station j, then the approximation requires five
joint probabilities for each (1,j) pair, i#j, of
the form

Pr(Ni<si_l’NjE“j,k1t)

The sixth joint probability can be calculated from
P (Nj¢si-1,t) and the other five, Thus, this
version of the partition approximation requires E

. . q
equations to be integrated where
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my+1)+5+1(1-1) (10)

ol e o |

Eq =) (
el

Then, if I=3 and each station has a capacity 50, E
is 183 which is considerably less than the 132,651
equations for all the Kolmogorov equations and only
moderately greater than the 153 for the independence
approximation.

TEST CASE
To illustrate the errors and computational speed for

the two approximations, we simulated a simple two
station tandem queue using a continuous simulation.

STATION s STATION
1 2

Each station had a capacity of ten entities, a
single server, and the arrival rate to the first
station was a sinusoidal function given by

A(t) = 1,0 + .5 sin (2wt/60)

so the mean arrival rate was one entity per unit
time, the amplitude was one—half the mean and the
period was 1.0 time units.

Ve represented two cases to simulate both heavy and
light traffic conditions. Both servers had the
same service rate which was 2 services per unit
time for Case 1 and 1 service per unit time for
Case 2. This gave a mean utilization of .5 for
Case 1 and 1.0 for Case 2.

First we simulated the tandem network by
integrating all 121 Kolmogorov equations. Then we
simulated using the two approximations employing 22
equations for the independence approximation and 28
equations for the partition approximation. Each
run started in the empty and idle condition, and
values of E(Nj,t), V(N;,t) were sampled and
compared every integral value of time until time
240, Using the Kolmogorov equation result as a
standard, the performance measure was the error
percent range over the 240 comparisons. That is,

error percent range = maximum percent error
=~ minimum percent error

The following table presents the results.

Error % Range-Independence Approximation

Case E(Ny,t) E(N9,t) v(§,t) V(Ny,t)

1 1.78 10.27 3.32 29.3
2 2.90 3.26 7.63 16.235

Error 7% Range-Partition Approximation

Case E(N1,t) E(Ny,t) V{N,t) V(No,t)

1 1.47 5.22 2.93 15.55
2 2.10 1.40 6.85 8.28

CONCLUSIONS

The results show that the independence approxi-
mation does surprisingly well. The maximum
percent error range in expected entities is 10.3
percent., However, the partition approximation does
even better where the maximum percent error range
is 5.2%. Note that both approximations have
significantly more error when approximating the
variance.

The CPU times are approximately proportional to the
number of equations integrated. Cases 1 and 2 took
215.0 and 140.8 records, respectively, on an AMDAHL
470.V8 computer for the Kolmogorov equations;
however, these two cases only required 44.3 and
25.0 seconds, respectively, for the partition
approximation. Of course, larger .cases quickly
require so many equations that the Kolmogorov
equation approach is impractical, and the only
alternative is one of the approximations.
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