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APPROXIMATING TIME-DEPENDENT NON-EXPONENTIAL QUEUES
Michael R, Taaffe and Kim Ong
School of Industrial Engineering
Purdue University

West Lafayette, Indiana 47907
Moment-differential equations, moment-matching, surrogate distributions and
numerical integration have been combined to form a small closed set of
differential equations that can accurately approximate huge sets of
Kolmogorov~forward equations for complex nonstationary queueing models.

INTRODUCTION is to reduce the number of differential equations from

This paper outlines a method for
time-dependent distribution of queue size for
Ph(t)/M(t)/S/C and Ph(t)/Ph(t)/1/C queueing models.
The general method, called the surrogate distribution
approximation (SDA) method, will be outlined and
graphical results for selected test cases will be
discussed.

approximating the

Real service systems typically exhibit time-dependent
behavior. Computer communication systems, telephone
systems, and air-traffic control communication systems
all can reasonably be expected to have arrival-traffic
patterns that vary with the time of day. Likewise,
mean rates of service may be time-dependent (e.g.,
server maintenance, a peak ftraffic server may be
replaced by faster servers...). Mathematical models of
stochastic service systems that include nonstationary
input (A(t) the arrival rate and u(t) the service rate)
are intractable for all but the simplest systems,
Simulation experimentation for nonstationary systems
can be quite costly [Fishman, 19781, Numerical
procedures for evaluating the time~dependent
distribution of system size such as Runge-Kutta
numerical integration of  the Kolmogorov-forward
equations has long been an effective method [Taaffe,
1982] [Giffin, 1978]. However, numerical integration
loses its appeal as a solution method for models that
have large state-spaces, because for every additional
point in the state-space, an additional differential
equation is needed, Multivariate queueing mddels can
easily be constructed which require thousands or
millions of differential-difference equations,
Priority queues, networks of queues and queues having
phase distributions of dinterarrival times and/or
service times are examples of models that can have
state-spaces which are too large to analyze via
numerical integration of  the Kolmogorov-forward
equations [Taaffe, 1982].

The SDA method for a multivariate queueing model
partitions the state-space into subspaces which have
uniform flow or transition rates. The probability of
being in a particular state of the system can be
constructed by a set of conditional distributions
(conditioned on being in a particular subspace) and a
set of probabilities relating the subspaces. In
addition, each of the conditional distributions are
approximated by matching the first two moments with the
first two moments of an approximating distribution
called the surrogate distribution, The result of the
SDA approach when applied to the Ph(t)/M(t)/S/C model

K(C+1) to 6K where K is the number of phases in the
arrival process. The Ph({)/Ph(t)/1/C is described by
K1 + CK1K equations and is approximated by K, + 3K1K2
where K. Is the number of phases in the arrival process
and K, is the number of phases in the service process.
In both cases the approximation replaces C (the
capacity) with a constant in the expression describing
the number of differential equations. The
approximation, thus, makes feasible analyzing even
systems with very large state-spaces. Next, the SDA
method will briefly be reviewed. For details, the
reader should consult Clark [1981] or Taaffe [1982].

spa

The SDA method will be described in this section by

using the well-known M(t)/M(t)/S/C as an example. More
complex models are described by more complex
differential equations, but the SDA approach for the

these models is similar to the M(t)/M(t)/S/C. The
Kolmogorov-forward equations for the M(t)/M(t)/S/C are
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There are C+1 states in this system, Therefore, C+1
differential equations can be numerically integrated to
analyze the time-dependent behavior. The SDA method
can approximate this model by calculating conditional
moments via differential equations and a few
approximate probabilities. Two conditional
distributions can describe the M(t)/M(t)/S/C. They are
the distribution of system size given not all servers
are busy and the distribution of system size given all
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the servers are busy. The conditional moment
differential equations for this system are:
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where Egp) = E(NCRPINGE) < 8)

ESP = EN(BIPINCE) 2 8)
Of course Ego)(t) + Eéo)(t) =1 and Ego)(t) =
PANCE) < S) and ESQ)(E) = PON(E) 3 5).
The moments of the system size are often the
performance measures of interest. One could

numerically integrate these five moment differential
equations (Ego)(t) and- Eéo)(t) are redundant, thus one
can be ignored) to describe system behavior., To do so,
however, requires knowledge of PS-1(t)’ Ps(t), and
Pc(t). Thus the set of moment differential equations

is not closed. The SDA approach is a moment matching
method, In this case (Eg1)(t), EEZ)(t)) are matched by
a Polya-Eggenberger (PE) distribution and (Eé1)(t),
Eéz)(t)) are matched by a second PE distribution. The
needed to solve  the

probabilities numerically

conditional moment differential equations are then

approximated by PE probabilities. The entire procedure

can be summarized as follows:

1. Egp)(t),Eép)(t) (The conditional moments) are

given at time t for p=0,1,2.

2. Assume both of the two
is approximated by a PE.

conditional distributions

3. Solve for the parameters of both PE
distributions given

surrogate

(E§1)(t),E§2)(t)) and (Eé1)(t),Eé2)(t))

4. caleulate dE{P)()/dt (p=0,1,2 and i=1,2) using,

in part, probabilities emanating from the
surrogate distributions.
5. Caloulate E.P(tedt) (ps0,1,2 and i=1,2) by

numerical integration.

The result of using the SDA method on the M(t)/M(t)/S/C
is five differential equations approximating C+1
equations with excellent accuracy (* 5% maximum error).
See Clark [1981] for details of the SDA method for the
M(E)/M(t)/S system or Taaffe [1982] for  the
M(t)/M(t)/8/¢C.

The remainder of this paper outlines use of the SDA
approach for two models with time-dependent phase
distributions as input.

Ph(t)/M(t)/S/C

The Ph(t)/M(t)/S/C model has the following state-space:

S = {(n,i,t)i0<n<¢C, 1<i<k,t>0}

n = number of customers in the system
i = arrival phase of the next arrival
k = the number of phases comprising the

arrival
The size of the state-space is the cardinality of S,
which 1is also the number of differential equations
needed to describe this system.
1St = K(C+1)

The state-space for the Ph(t)/M(t)/S/C system can be

partitioned into 2K regions, where K is the number of
phases needed to describe the arrival process. There
are two subspaces for each phase of the arrival

process: one subspace for Phase i and the number of
customers < S and another for Phase i and the number of
customers > S. The result of this partitioning is 2K
conditional distributions:
P(N(E)=JiA(E)=1, N(t) < 8) J=0444.8=1
i21,2,44.K
P(N(t)=JiI(t)=1, N(t) > &) J=8,8+1,...,C
i21,2,..45K

where A(t) = current phase of the next
arrival at time t

N(t) = number of customers in
the system at time t

The SDA approach requires matching two moments for each
conditional distribution and a probability for the
system being in a particular subspace; i.e.,
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1]

s‘i{y’ﬁtt) = EQV(E)PIACE)=1,N(E) < S)
and
EPM(E) = EQNCHPIAC)=1,N(t) 3 §)
conditional

for i=1,2,...,K and p=0,1,2. there are 2K

distributions and 3 moments per distribution

(Oth, 1St and an). The probabilities required in
evaluating the conditional moment differential
equations are

1o Pg_qa2(0) % e Agyy

2. Ps’i(t) i=1,2,4445K

where A(K) = set of phase indices which
may be terminal phases for
the arrival process.
Implementation of the SDA method on the Ph(t)/M(t)/S/C
model has resulted in an efficient and accurate
approximation. Test cases examined thus far have
exhibited a maximum error in the first moment of less
than 2%. Similar accuracy has also been the case for
other performance measures such as VAR(N(t)) and
P(N(£)40). Figure 1 is a plot of E(N(t)) for a typical
Ph(t)/M(t)/3/20 model. In this case the inter-arrival
distribution is an Erlang order 3 distribution with a
time-dependent rate parameter (E3(t)).

Ph(£)/Ph(t)/1/C

The state-space for the Ph(t)/Ph(t)/1/C model is

8 = {(0,1,001 £ 1 < KMV {(n,i, i1 <n g,
1_<_i5_K1,1_<_j$K2}

where (n,i,j) = n customers, i is the current

phase of the next arrival and
J is the current phase of the
customer in service

= number of phases in the
arrival process

—_
[l

K2 = number of phases in the
service process

The size of the state-space is
] [
181 = K‘l + CK1K2

Clearly for moderate K; and large C, the number of
equations can become t0o large for convenient analysis.
As in the Ph(t)/M(t)/S/C model the SDA approach will be
applied after partitioning the state-space by phase,
both service and arrival, The conditional wmoments
associated with the conditional distributions for the
subspaces are

(6 = EN(OPIA(D=L, T(0=5) 1 <i< K,

A(t) = current phase of the next arrival
at time t

S(t) £ current phase of service for the
customer in service at time t

The probability terms that appear on the right-hand

51?e) of the conditional moment differential equations

dEi? (t)/dt are:

1o Py g ol

2. (t)

P1,i,m

3+ Pea;

for 1 <1i<KX

1<jig<K

€S
(K2)
and A set of indices of all
possible terminal phases
of the arrival process

)

S(K y = set of indices of all
2 possible terminal phases
of the service process

Probabilities (2) and (3) are easily approximated by
the usual SDA method, Probabilities (1) could be
approximated similarly, however, since there are so few

of  them, they can easily be computed via the
Kolmogorov equations directions. Thus the number of
differential equations to approximate the

Ph(t)/Ph(t)/1/C is Ky + 3KK,. Again the accuracy has
thus far been excellent across all performance measures
and test cases examined.

SUMMARY

The combination of moment-differential, moment
matching, surrogate distributions and numerical
integration has been used to construect algorithms
resulting in a small closed set of differential

equations that can accurately approximate huge sets of
Kolmogorov-forward equations for complex nonstationary
queueing models., The method described is called the
SDA method and has been wused successfully on the
M(t) /M(e) /S, M{t)/M(t)/s/c, and  M(E)/M(%)/1/C  p-
priority models in the past [Rothkopf, 19791 [Clark,

19811 [Taaffe, 1982]., This paper outlined the SDA
approach for models with time-dependent phase
distributions, which proved to be an  excellent
approximation. the SDA method also is being applied to

some overflow models. The method shows great promise
for making complex multivariate queueing model analysis
more computationally feasible.

REFERENCES
Taaffe, M.R., (1982), Approximating Nonstationary
Queueing Systems, Ph.D. dissertation, The Ohio

State University, Columbus, Ohio 43210,

Ciark, G.M, (1981), "Use of Polya Distributions in
Approximate  Solutions to Nonstationary M/M/S
Queues", Comm. of The ACM, Vol. 24, No. 4, April
1981.




178
Michael R. Taaffe, Kim Ong

Rothkopf, M.H. and Oren, S.S., "A Closure Approximation
for the Nonstationary M/M/S Queue, Management
Science, Vol, 25, No. 6, June 1979.

Fishman, G.S., Principles of Discrete Event Simulation,
John Wiley & Sons, Inc., New York, 1978.

Giffin, W.C., Queueing: Basic Theory and Applications,
Grid, Inc., Columbus, Ohio, 1978.

PH(t)/M(t)/s8/C
Example: H3(t)/M(t)/S/C
Capacity: 30
Servers: 5
Initial number
in the system: 0
Arrival Phase Probabilities Pi Phase Arrival Rates li(t)
.2 45 + 3 sin(wt/2)
.3 38 + 8 sin(wt/3)
5 28 + 9 sin(n/3)

Service Rate u(t) .

6 + 3 sin(wt/2)
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