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ABSTRACT
This paper introduces a new powerful
optimization technique for discrete event dynamic
systems, such  as, air traffic control systems,
discrete part manufacturing processes. It can also be
used for enhancement of the simulation results of or
the monitoring of the operations of such systems in
real time.

analysis and

I. INTRDUCTION

It is certainly not necessary to argue the importance
of simulation to the study of discrete event dynamic
systems. The continued development of new simulation
languages and the publication of books in this area
are eloquent testimonies to the wvitality of the
subject matter. Traditionally, simulations like all
experiments are used to collect statistics which in
term re wused to predict system behavior under well
defined environments. The problem with simulation, as
with all numerical efforts, is the relative lack of
insight generated with numerical results. Brute force
parametric analysis using simulation is very difficult
and expensive . These limitrations are well known.

II. WHAT IS PERTURBATION ANALYSIS?

Perturbation Analysis is a newly developed analysis
technique that can be used to enhance simulation
results. By doing some analysis on the outputs of a
simulation, one can literally squeeze ouyt a lot more
information than traditionally thought possible. The
quickest way to explain what perturbation analysis can

do is by way of a paradigm. Consider a DEDS as
illustrated in Fig.l.
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The DEDS has certain parameter, 8. , which is a

parameter of interest; it also has an output which is
usually a performance measure PM, such as, the
throughput. We observe the behavior and the PM of the
DEDS over an period of time, say, [0,T]. Now imagine
that we have an identical twin to the Dmus .u Tagel au
the sense that this twin duplicates EXACTLY the
behavior of the original DEDS down to the last detail
in  lock~step timing (In the case of simulation, we can
create this twin by using a second identical computer
running the same simulation program with the same

random seeds.). However, for this identical twin DEDS
we are endowed with the additional capability of being
able to modify the input parameter @ by a small

amount Ael . Clearly, the output or PM of the

twin  DEDS in this case will in general become
different from the original DEDS by some (usually
small) ammount. Ve denote the perturbed PM as

PM(Gl + Ael ) and computed the sensitivity as

PM(el +A61) —PM(el)
sensitivity of PM to 6
Ael 1
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This is illustrated in Fig. 2.
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Note becuase of the presence of the twin DEDS, this

sensitivity 1is

available continuously and in real
time .

Finally, imagine that instead of A"EIhgTE twin
DEDS, we have identical triplets, quadruplets, in
fact, as many identical DEDS as there are parameters
of interest. In other words we can compute in real
time s s S, 3seey S , or the gradient

or sensitivity vector 9PM/ ¥® = [ IPMAGG, ,...,
3PM/36M 1. One cannot emphasis too strongly the
significance of this capability EEE.EES fining tuning

of the design of or the operations management of a
DEDS. Many heretofore unsolved problems in DEDS will

now be amenable for jterative *solution with this
capability . The catch here is that ordinarily the
cost of such twin systems is prohibitive.

PERTURBATION ANALYSIS IS A TECHNIQUE WHICH
IN EFFECT SAYS THAT ONE CAN HAVE THIS
CAPABILITY OF PRODUCING GRADIENT INFORMATION
OR SENSITIVITY VECTOR 1IN REAL TIME WITHOUT
THE NECESSITY OF DUPLICATING THE DEDS M
TIMES PROVIDED ONE IS WILLING TO DO SOME
RELATIVELY SIMPLE PROCESSING OF THE SYSTEM
BEHAVIOR AS IT EVOLVES.
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That the above "almost free lunch" is indeed possible
is the power of perturbation analysis as developed by
the Harvard group during the past years.

Of course,
assertion

aside from a demand for proof of the above
(see below) alert readers at this point may
point out that this "free lunch" is not very
appetizing since all it does is to answer the "what
1f" question of what would have happened during the
interval {0,T] 4if the parameter had been O+ 0. What
the user wants is to be able to use the sensitivity
information to predict what will happen in the next
observation interval [T, 2T]. The answer to this
objection is that

(i) the objection is not an attack on the validaty of
perturbation analysis.

(ii) there are well known statistical answers to this
question of prediction.

Every experimenter has faced the problem of using the
result of experiments to predict the outcome of
"similar" future experiments. If you observe over a
long series of tosses that a coin is biased 60% for
"heads", then one is justified to think that one can
give 6:4 odds on the average involving a large number
of bets wusing the coin. On the other hand if he

observed the coin turn up heads on the 536th toss in a
series of 1000 tosses, it will be foolhardy to bet
that the same thing will repeat on the mext 1000
tosses Just like statistical averaging justifies our
first assertion, statistical variation will completely

invalidate the second assertion. In other words,
perturbation analysis simply gives you certain
information, how you wuse it is an entirely seperate

issue. More importantly , however, recent results in
fact show that perturbation analysis method can yield
strongly consistent estimates [refs. 21,22] under well
defined conditions and has statistical advantges in
estimation compared to conventional methods [ref.20].

Historically, the new approach started as an "ad hoc
method" to solve a particularly long standing problem
in production ljine management and design {[refs.l,2].
Gradually, it was realized that the "ad hoc method" is
related to some fundamental ideas of dynamical systems
[ref. 3}, and that in fact 4t can be applied to
general queueing mnetworks when viewed as stochastic
dynamical systems. The analytical and experiemental
results obtained din late 1981 in [ref. 4] in
recognition of this generalization opened the way to

systematic study of this approach as applied to DEDS
[refs 5-13, 18-20]. Since most of the details, proofs,
and experimental results already exist in the open
literature, we refer the interested readers to the
appropriate references. Breifly at this point, the
technique has been rigorously estblished for a class
of DEDS and  their perturbations; and shown
experimentally to work for a much larger class of
DEDS. Although rigorous proof does not exist for this
larger class, an understanding of the basic idea
behind the technique will persuade most reader of the
inrinsic generality of the approach. Important further
work awaits intérested researchers.

III. APPLICATIONS TO SIMULATION.

Perturbation

analysis is noninvasive and
complementary to any -exilsting simulation effort .
Whatever dimprovements ,such as variance reduction,
made

to a simulation will be equally applicable to our

perturbation analysis; the computational advantage of
N:1 remains constant. Thus, the principles of
perturbation analysis are independent of issues of
statistical significance and experimental design. In

fact, ref [20] points out that perturbation analysis
is statistically advantageous in addition to being
computationally superior.

The most obvious applications of this method of

analysis of DEDS ds in performance evaluation or
optimization. Most performance measure (PM) of a DEDS
can be expressed as a function of Throughput (TP),

Sojourn Time
quantity being
Law (ST*TP=QL).
respect to
calculated as

(ST), and/or Queue Length (QL), the last
related to the first two via Little’s
Consequently, the gradient of PM with
system  parameter, 9PM/ 38, can be
a linear combination of the gradients

9TM/96 and 35T/ 38, both of which we can compute
efficiently [refs.4,13]. The parameters that have
been considered so far are mean service times, queue

sizes, no. of customers
technology translates to
failure/repair probability,
pallets; while in computer performance evaluation they
may mean, disk speed, memory size, and degree of
concurrent programming.

which in manufacutering
machine speeds and
buffer limits, and no. of

With this gradient information, we can use any one of
the numerous optimization  techniques for the
successive JImprovement of the PM. Again the question
of which one of the several techniques for stochastic
optimization should one adopt for a given problem is
an  issue that can be separately addressed. More
generally, perturbation analysis can be carried out on

a server basis [ref.4] or on a customer basis
[ref.13]. The coupling between the two is determined
by the obvious fact that service initiation/completion
and customer arrival/departure are essentially
equivalent events with the possible addition of
waiting or blocking times. Since customer and servers
are elementary building blocks of queueing systems,
[refs.4 and 13] essentially demonstrate the ability to
perform in principle all queueing system analysis.

Another wunique applicatjion of this approach is the
on-line mohnitoring of systems operations. Since we can

calculate sensitivities of PM with respect to system
parameters in real time, we can provide valuable
sensitivity dinformation concerning the system for
operations management. This feature is reminiscent of
"neighboring optimal control" or "extended Kalman
filtering" ideas in control theory where corrective

action for a system can be taken based on observed or
estimated perturbation about a nominal trajectory.
This is a wunique feature of perturbation analysis in
that it can be used in real time to analysis real
system data.

IV. CONCLUSION

Perturbation Analysis is still in its infancy. We
believe it 1s based on a sound and general idea very
different from existing approaches. Experimental and
theoretical work done so far justify our beliefs. Much
more work remains to be done.
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