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ABSTRACT

In the design and analysis of simulation experiments, it
is generally difficult to estimate model performance pa-
rameters with adequate precision at an acceptable com-
puting cost. This paper surveys the main variance re-
duction techniques that have been developed to improve
the efficiency of simulation-based performance statis-
tics.

INTRODUCTION

From both a theoretical and practical standpoint, exper-
imentation with a simulation model is frequently the on-
1y feasible means for performing systems analysis on a
large-scale problem. However, the computing cost asso-
ciated with direct simulation of a complex stochastic
system can be a major drawback. In particular, exces-
sive sample sizes may be required to yield acceptable
precision in simuiation-based estimators of relevant
system parameters. This paper gives an up-to-date ac-
count of the variance redcution techniques that have
been developed for or adapted to stochastic simulation.

ile represent the basic simulation model under discussion
as a response function ¢(-) whose input process v, -

i > 1} consists of independent random numbers. Follow-
ing Kammersley and Mandscomb [1], we reserve the term
random number to refer to a variate that is uniformly
distributed on the unit interval (0, 1). For simplici-
ty we also assume that there is a finite upper bound m
on the number of inputs sampled in one replication of
the model; thus the response function ¢(-? has for its
input the mx1 random vector Y = [Ul, cees Um]' that is

uniformly distributed over the m-dimensional unit cube

Im

[ =1

(0, 1) (1)

J=1

viith probability density
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fo(g) = . (2)
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In terms of the random variable Y = ¢(U), the estimand
of interest is

o = BN = [ s = [ swa (@)
m m

R I

The Variance Reduction Problem

Direct simulation simply computes the sample mean re-

sponse Yn over n independent replications of the basic
model to yield an unbiased estimator of e with Var(Yn)

= Var(Y)/n. For a fixed sample size n, the problem is
to apply an appropriate variance reduction technique
(VRT) to the basic model in order to obtain an alterna-

tive estimator en with

~

E(én) =6 and Var(en) < Var(Yn). (4)

Now different variance reduction techniques require dif-
ferent amounts of computing time to execute one repli-
cation of the simulation model; and some VRTs inherent-
Ty require a random run length or a random replication
count (for example, see the discussion below on impor-
tance sampling in the time domain). To take these phe-
nomena into account, a more comprehensive formulation

of the variance reduction problem is required.

In general let 8 denote an estimator for e that is based
on a VRT whose total computing time is C(8). Relative
to the direct simulation estimator Yn with computing

time C(7,), the efficiency of 6 is

n(8:%,) = Var(V )-E[C(Y)1/{Var(e)-ELC(e)1}.  (5)

The general variance reduction problem is to construct
8 such that

E(s) =6 and n(é;vn) > 1. (6)

Jf course the efficiency n(é:Yn) of @ relative to direct
simulation should be as large as possible.

Classification of Variance Reduction Techniques

Following Kohlas [2], we classify all variance reduction
techniques into two major categories -- correlation
methods and importance methods. For a fundamentally
diff?rent taxonomy of VRTs, see Neison and Schmeiser [3,
4, 51.

The correlation methods include three techniques that
take advantage of Tinear correlation among simulation
responses to yield efficiency increases. The techniques
of common random numbers and antithetic variates respec-
tively require the experimenter to induce positive and
negative response correlations within blocks of simula-
tion runs by forcing an appropriate functional depend-
ence among the input vectors {U; : 1 < j <n} used on

those runs. In contrast to this approach, the control
variates technique uses regression methous to exploit
any inherent correlation between the output Y and a se-
lected concomitant random vector X with known mean iy

that is observed curing each run.
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The importance methods include four techniques that
achieve improved efficiency by ultimately concentrating
the sampling effort in those subregions of the input do-

main I that make the greatest contribution to the inte-
gral (3). Among the variants of the technique called
importance sampling, Russian roulette and splitting are
most easily adapted to discrete-event simuTation because
they are applied in the time domain. khereas the con-
trol variates technique is effective when there is a
strong linear association between the response Y and
some auxiliary random vector X with known mean, strati-

~

fied sampling exploits prior knowledge of the distribu-
tion of X to yield an efficiency increase when there is

a complex nonlinear relationship between Y and X. As an

alternative means of ensuring that the mportance re-

gions of I" (or of the time domain) are adeguately sam-
pled, systematic sampling forces uniform sampling
throughout the domain of interest by partitioning that
domain into directly congruent strata so that a single
point randomly sampled in one stratum automatically
identifies a corresponding sample point in each stratum.
Finally, the technique of conditional Monte Carlo
achieves an efficiency increase by converting an estima-
tion problem expressed as a conditional expectation {re-
spectively, as an unconditional expectation) into anoth-
er problem expressed in terms of an unconditional expec-
tation (respectively, a conditional expectation).

CORRELATION METHODS

Induced Correlation Methods

If Yy, = ¢1(g1) and Y, = ¢2(gz) are the responses of a
pair of simulation ekperiments for which the difference
E(Yl)-E(Yz) is to be estimated, then the technique of
common random numbers is used to reduce the variance of
= Yl-Y2

Var(yY,-Y (7)

1 2) = Var(Yl) + Var(Yz) - ZCov(Yl,Yz)

by inducing Cov(Yl,Yz) > 0. If instead E(Yl) is to be
estimated and Yl’ Y2 represent replicates, then the meth-
od of antithetic variates is used to reduce the variance
of Z = %(Y1+Y2)

Var[%(Y1+Y2)] = %Var(Yl) + %Var(Yz) + %Cov(Yl,Yz)

%Var(Yl) + %Cov(Yl,Yz) (8)

by inducing Cov(Yl,YZ) < 0. In each case, the alterna-
tive direct approach would be simply to execute two in-
dependent runs in order to yield a single observation o?
Z. For both of the induced correlation techniques, the
final estimator én is the average Zn/z of a random sam-
ple of n/2 observations of the associated variate Z.

To induce Cov(Yl,Yz) > 0, the technique of common ran-
c¢om numbers consists of taking

U= b (9)

Similariy, to induce Cov(Yl, Yz) < C, the simplest ver-

sion of the method of antithetic variates uses the re-
Tation
, 17" dis mxl,

Yp = LUy, where 1= 1, ... (10}

Although statements frequently appear in the 1iterature
to the effect that (9) and (10) are not guaranteed to
produce the desired correlations in complex simulations,
it should be noted that efficiency gains are ensured in
the important special case that the response functions
$q and ¢, are concordant for each of the random numbers

constituting their input sequences. This means that
with respect to each input coordinate, the functions
9 and $o must be monotone in the same direction; how-

ever, both functions may be monotone nondecreasing in
one coordinate and monotone nonincreasing in another co-
ordinate. Bratley, Fox and Schrage {6] gave a defini-
tive treatment of the methods of common random numbers
and antithetic variates based on these considerations.

Control Variates

To construct a controlied estimator for 6 = E(Y), we
must identify a g-dimensional column vector of concom-
itant random variables X = [Xl’ cees XG]' having both

a known expectation ty and a strong linear association
~)

with Y. In essence we try to predict and counteract
the unknown deviation Y-e by subtracting from Y an ap-
propriate linear combination of the known deviations

X-uy:

Y(B) = Y - b(X-gy).
The controlled response Y(b) is unbiased for any fixed
g-dimensional row vector b of control coefficients. Let
oy denote the variance of Y, let Zy denote the covari-
ance matrix of X (assumed to be nonsingular), and let
yx denote the row vector of covariances between Y and
the components of X.

(11)

The variance of the controlled

response
= 2 !
Var[Y(b)] of ZgYXQ' + ggxg (12)
is minimized by the optimal control coefficient vector
_ -1

B = OyEy o (13)
which yields the minimum variance

Var[¥(g)] = o}- (1-R, ) (14)

where Ry, y is the multiple correlation coefficient be-
tween Y and X,

In practice gyy and I, are usually unknown and hence g
must be estimated. Let {(Yj,gj) : 1 €j < n} denote the
results observed ‘on n independent replications of the

simulation. In terms of the statistics
n n
Voentzv, s2- (ot g (v.-¥ )%, (15)
j=14 j=1 9
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13 s D71 (XX ) (L-E)0, (16
Xn =n Jil J’ Y = (n" ) Jil (,,,J'"Kn (XJ—én) 2 )
and Sy = (1)1 T (Vee¥ (L) (17)
=YX 351 J ‘n/*Rj=nt ?
the sample analogue of (13) is
g =Syt (18)
B = 2yxx -
Thus a point estimator of & is
o= ¥(g) = ¥ - 8(X -uy). (19)

Under the assumption that Y and X have a joint normal
distribution

Y ) 62 o
n Nq_|_1 R T YX R (20)
' X oyx Ex

>
=

an exact 100{1-y)% confidence interval for e is given by

V(é) * tl-y/Z(n-q_l)';Y.){'A’ where (21)

2.y = (n-g-1) e (n-1)- (52 - sys3tse), (22)
2 _ -1 -1 5 -1,5

6% = n 0+ (n=1)77 (X ) 'Sy (R may) s (23)

and tl_Y/z(n—q—l) denotes the (l-y/2)th quantile of

Student's t-distribution with n-g-1 degrees of freedom.

llow the use of é rather than g means that the minimum

variance (14) is not achieved. To measure the efficien-
cy loss arising from estimation of the optimal control
coefficients, Lavenberg, Moeller and Welch {73 derived
the loss factor

Var[¥(g)1/Var[¥(8)] = (n-2)/(n-g~2). (24)
Conbining (14) and (24), we have
var{¥(g)1 = Var(Yn)-[}l—ﬁi.X)-ﬁ%é%ﬁ] , (25)

from which it is clear that a variance increase can re-
sult from using too many control variates (q) relative
to the replication count (n).

fubinstein and HMarkus [8] carried out a development simi-
lar to (11) through (25) for the case of a multivariate
response -- that is, for a p-dimensional output vector

Y=[Y., ..
L 10

Arnold and Pegden [9] extended the preceding development
in another direction so as to apply multiple controls to
the estimation of a general linear model. Portanova and

Kkilson [10] further extended the work of Nozari, Arnold
and Pegden to handle a multivariate response.

., Yp]‘. For a univariate response, Nozari,

In all of the foregoing discussion of control variates,
the output analysis was based on the method of indepen-
dent replications. For the case of a univariate re-

sponse, Lavenberg and Welch [11] also discussed the ap-
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plication of control variates in conjunction with the
method of batch means and the regenerative method of
simuiation analysis.

Several types of control variates have recently been
proposed for different classes of simulation models.
Wilson and Pritsker [12, 13] developed a set of asymp-
totically stable "standardized service-time" controls
for use in queueing network simulations. Grant and
Solberg [14] and Venkatraman [15] devised effective
controls for stochastic activity networks. In the con-
text of nonlinear regression problems, Swain and Schmei-
ser [16] sought to characterize the sampling distribu-
tion of the nonlinear parameter estimators. Using as
controls the Tinear approximators to the regression so-
Tution, Swain and Schmeiser were able to achieve sub-
stantial efficiency increases when estimating the mo-
ments of the nonlinear parameter estimators.

IMPORTANCE METHODS

Importance Sampling in the Input Domain "

This technique requires the input vector U to be sampled
from an alternative density f(-) instead of the uniform
density fo(-). To compensate for this distortion of the
input so as to achieve condition (4), the original re-
sponse Y = ¢(U) is replaced by the variate Z = ¢(U)/f(V).
The importance estimator 6n is then taken to be the sam-
ple mean Zn computed over n independent replications of
the new response Z. When the importance density f(-)
closely mimics ¢(+), the ratio ¢{U)/f(U) is nearly con-
stant, and a substantial variance reduction is achieved.
Sampling from the optimal importance density

g = Lol -Towl/| Telwl-Toluddw, k™ (26)
m

R

minimizes Var(én); see Kleijnen [17]. This technique

has been successfully applied to many distribution sam-
pling experiments. In such situations, there is no no-
tion of a stochastic process evolving over time; and
thus the general behavior of the response function ¢(-)
is relatively easy to explore. However, in complex dis-
crete-event simulations exhibiting dynamic behavior over
(simulated) time, it is almost impossible to arrange
even a general similarity between the functions ¢(+) and
f{+). It should be noted that this technique is not
juaranteed to yield a variance redcution: with a poorly
chosen importance density, large variance increases can
occur (Bratley, Fox and Schrage [6]).

Imnortance Sampling in the Time Domain

Cioussis and ililler ['18] successfully applied a variant
of 1importance sampling to estimate the probability of
system failure in a fault-tolerant computer system. In
such systems, failure is an extremely rare event; typi-
cally its probability of occurrence is 0.0001 or less.
Clearly an effective variance reduction technique is es-
sential to the feasibility of simulation-based reliabil-
ity analyses of this type. Although the basic idea of
importance sampling is relevant to the estimation of
rare-event probabilities, the complexity of the response
function ¢{-) precludes the approach outlined in the pre-
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ceding subsection. Using the technigues of Russian rou-
lette and splitting, Kioussis and Miller gave a general
formulation of importance sampling in the time domain
for transient simulations.

Let {M(t) : 0<t< tT} be a stochastic process with
state space S such that M(t) denotes ‘the status of the
simulation model at time t, and tT is the simulation
stopping time. Let {Bi : 1 <1 < b} denote disjoint
subsets of S that are "bad" in the following sense: if
M(t) hits a state in Bi at time t, a degradation in sys-
tem status occurs; and the system failure event F is
more Tikely to occur in the remaining time interval (t,
tT]. We also have the disjoint subsets {Gi :1<1<qg}
that are “good" in the opposite sense: if M(t) hits a
state 1in 61 at time t, then the event F is less Tikely
to occur in the remaining time interval (t, tT].

The Russian roulette technique is applied when the sam-
ple path of the process {M(t)} hits a "good" subset Gi
at time t: (a) The path is continued with probability
pi(t), and it is terminated with probability 1-p1(t) {(so
that the associated simulation outputs are discarded);
(b) If the path is continued, then jts weight is in-
creased by the factor 1/pi(t) [this means that the indi-
cator function IF for the event F is replaced by
IF/pi(t)]‘ The splitting technique is applied when the
sample path of {M(t)} hits a "bad" subset B, at time t:
(a) The path is split into si(t) separate paths, each of

which continues in time independently of the others (con-
ditional on the common history up to time t); (b) The
weight of each path is decreased by the factor 1/si(t)
[this means that I is replaced by IF/si(t)]. Indepen-
dent replications of this entire procedure can be used

to construct point and interval estimators of the failure
probability e = Pr{F} = E(IF).
cy measure (5), Kioussis and Miller reported results in
the range 1.67 < n(é:Yn) < 2.55 for a fault-tolerant com-
puter system with four parallel processors.

In terms of the efficien-

In the context of steady-state simulation, Hopmans and
Kleijnen [19] applied time-domain importance sampling in
conjunction with regenerative analysis to estimate the
proportion 6 of calls coming into a telephone exchange
that encounter a busy signal and thus are blocked
(Tost). Hopmans and Kleijnen reported results in the

range 0.859 < n(a:Yn) < 1.06; thus in some instances the
net efficiency increase required by (6) was not
achieved.

Stratified Sampling

In some instances the effectiv? gse
E(Y

may require partitioning the space of X into, say, L
strata {Sh : 1 <h <L} with known weights

Prestratification.
of an auxiliary variate X = g(U) to estimate s =

James R. Wilson

m, = Pr{XeSh} = J fo(g)dg, 1<h<L, (27)

-1
ﬁ (Sh)
If in stratum h we randomly sample n, pairs {(th,xhj):

1<j< nh} (where N, is fixed in advance) and calculate
the associated mean response

n
h
=t £ h<
Yos g 'El Y; for 1<h<L, (28)
j=
then the prestratified estimator of & is given by
6 = 3 m.¥,. (29)
N1 Nh

In effect we are forcing a random sample of ny inputs
{Qj} to fall in the subregion g'l(sh) of 1" Let

byp = E(V]%eS,) and  of, = E(Y2|%es,) - uf, (30)
respectively denote the mean and variance of the re-
sponse Y within the hth stratum. With the proportional
allocation

n; 2 nemys 1<hgi, (31)
the variance of the corresponding prestratified estima-

tor 8° is
n

- kb
Var(e;) =Var(Y ) -n"" =

(32)
n h=1

nh(uYh—e)z.

See Cochran [20] for a comprehensive treatment of pre-
stratification.

Poststratification. It is usually awkward to implement
prestratified sampling in discrete-event simulation. By
contrast, poststratification merely requires the experi-
menter to make n independent replications of his origi-
nal simulation model in order to generate a random sam-
ple {(Yj,gj) : 1< 3 <n}of size n. After the jth rep-

Tication, the observed auxiliary variate Xj is used to
classify the corresponding response Yj into its appro-
1<j <N} denote the fi-
nal subsample of random size Nh falling in stratum h,

1 <h<L, Subject to the condition that all strata are
nonempty (that is, Nh > 0 for all h), the poststratified
estimator for ¢ is

priate stratum. Let {th :

o = 5 (! N ) (33)
8. = & g . (N z Y..).

noopep hUh j=1 hj

==> E(én) =g and (34)
Var(8) = 0l 5 [ + (om )/nlod, + o(nd) (35)
ar en =n he1 “h \ 'nh th .
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After some manipulation of (32) and (35), we see that
the efficiency of poststratification is asymptotically
equivalent to that of prestratification with proportion-
al allocation. Wilson and Pritsker [12, 13] developed
poststratified point and interval estimators for the re-
generative method of simulation analysis as well as for
the method of independent replications.

Systematic Sampling

Based on a partition of the input domain I" into n di-
rectly congruent strata {Sj}, systematic sampling re-
quires the selection of a single observation from each
stratum. Although this technicue appears to resemble
stratified sampling, it does not involve a separate ran-
domization within each stratum. Once the first sample
point glssl is determined, all of the other points

{gjesj : 2 <j <n} are chosen to occupy the same rela-

tive position within their respective strata. The sys-

tematic sampling estimator of o is

~ _1 n

6, =N I o(U:) . (36)
=1

This technique is attractive because it is both simpler
and easier to apply than the other importance methods

in the simulation of a Markov chain with rewards, Fish-
man [21, 22] applied systematic sampling in the time do-
main. Observe that if w is a fixed "rotation angle" in
the unit interval [0, 1] and if U is a random number,
then the translation modulo 1 of U by w {that is, the
rotation through the angle w of the random point U on
the circle with unit circumference)

Ut if Utw <1
UB = (37)
Utw-1  if Ut > 1
yields a random number. To generate n parallel correla-
ted replications of a given Markov chain, Fishman pro-
posed that all of the state transitions starting from
state s at time i should be simulated using rotations of
a single independently samplied random number Usi by a

set of regularly-spaced rotation angles. If Ksi denotes

the number of replications of the chain that reside in
state s at time i and if Ksi > 0, then the next transi-

tion for the jth such replication is sampled using the
random number input

Y ij - UsiQ[(j-l)/Ksi] for 1<j<K

. (38)

si’

For a broad class of infinite-state Markov chains, Fish-
man established the following properties of the result-
ing rotétion sampling estimator 6; and its associated
cost C(e;):

Var(62) = 0([1n(m) 1%y, (39)
ECC(87)] = 0([1n(m) % (40)
==> 1/n(6::7,) = 0i[1n(m)3%/n%} = o(nh). (a1)

Relations (39) through (41) are remarkable results.
Clearly systematic sampling merits further attention.
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Conditional Monte Cario

Unconditioning by a Change of Variable. The conditional
Fonte Carlo technigue was originally developed to esti-
mate the conditional expectation of the response Y = ¢(U)

given a fixed value X0 for some auxiliary random vector
% = g(U). To reformulate the estimand

= E(Y[%=xg) = | ¢(u)-Folulglu)=xg)du (42)
0 0 0

IIII
as an unconditional expectation taken with respect to the
original input density f0(~), the key step of condition-

al Monte Carlo consists of finding suitable spaces A, B
and a continuously differentiable map

w:ye " — [au),g(u)] e AxB (43)
with continuously differentiable inverse t = g'l. Thus
if we generate a random sample {gj : 1< j<n} from fo
and apply the input transformation

Tiyel™— clalw).xd e 8700 (44)

then the conditional Monte Carlo estimator of (42) is

(45)

D

n

=1
™3>

¢[I(Qj)]°w(gj),

where the weight function W(-) is chosen to satisfy (4).
Let J (z,x) denote the Jacobian of t evaluated at the
point (z,x) e AxB. Moreover, let f,(z) and Fy(x) respec-

tively denote the marginal densities of the random vec-
tors Z = g(U) and X = g(U) when U is sampled from ().

Granovsky [23] showed that the variance of en is mini-
mized by the optimal weight function

(46)

W*(u)

Swindles Based on Conditioning. In recent years the term
conditional Fonte Carlo has also been used to refer to a
class of specialized techniques for which we obtain a
more precise estimate of an unconditional expectation

o = E(Y) by conditioning on an appropriate auxiliary var-
jate X = g(U) at some stage of the estimation procedure;

see Bratley, Fox and Schrage [61. The law of total prob-
ability ensures that the new response

Z = E(Y[X) = E[Y|8(V)] (47)
is unbiased. Moreover, the variance decomposition
var(Y) = var[ E(Y[X) 1+ E[ Var(Y|X) ] (48)

reveals that Var(Z) < Var(Y) unless Y has a strict func-
tional dependence on X (that is, unless Var(Y|X) = 0 with

probability one). Thus with n independent observations
of the pair (Y,X), the corresponding conditional Monte

~

Carlo estimator en = Zn is more precise than the direct
simulation estimator Yn:
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Var(

However, when the pairs {(Y.,X;) :

James R. Wilson

6n) = Var(Z)/n < Var(7,). (49)

1 € j <n} are not

independent, the Teft-hand equality in (49) breaks down

and

variance increases can occur unless some additional

assumptions are made about the nature of the functional
relationship Z = Z(U).
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