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ABSTRACT

In this tutorial paper we give a general introduction
to verification and validation of simulation models,
define the various validation techniques, and present
a recommended model validation procedure,

1. INTRODUCTION

Simulation models are often used to aid in decision
making and problem-solving. The users of these models
are rightly concerned with whether the models and
information derived from them can be used with confi-
dence. Model developers address this concern through
model verification and validation. Model validation
is usually defined to mean "'substantiation that a
computerized model within its domain of applicability
possesses a satisfactory range of accuracy consistent
with the intended application of the model"
[Schlesinger, et al. (1979)] and is the definition
used here. Model verification is frequently defined
as ensuring that the computer program of the computer—
ized model (i.e. the simulator) and its implementation
is correct and will be the definition used here. A
related topic is model credibility or acceptability,
which is developing in the (potential) users of in-
formation from the models (e.g. decision-makers),
sufficient confidence in the information that they

are willing to use it.

A model should be developed for a specific purpose or
use and its validity determined with respect to that
purpose. Several sets of experimental conditions are
usually required to define the domain of the model's
intended application. A model may be valid for one
set of experimental conditions and be invalid in an-
other. A model is considered valid for a set of
experimental conditions if its accuracy is within the
acceptable range of accuracy which is defined as the
amount of accuracy required for the model's intended
purpose.

The substantiation that a model is valid, i.e. model
validation, is part of the total model development
process and is itself a process. This process con-
sists of performing tests and evaluations within the
model development process to determine whether a model
is valid or not. Usually it is not feasible to deter-~
mine that a model is absolutely valid over the com-
plete domain of its intended application. Instead,
tests and evaluations are conducted until sufficient
confidence is obtained that a model can be considered
valid for its intended application [Sargent (1982,
1984) and Shannon (1975, 1981)].

Recent research [Gass and Thompson (1983), Sargent
(1981, 1982, 1984), and Schlesinger et al. (1979)] has
related model validation and verification to specific
steps of the model development process. We will
follow the development of [Sargent (1982, 1984)] and

use Figure 1. The probfem entity is the system (real
or proposed), idea, situation, policy, or phenomena to
be modelled; the conceptual model is the mathematical/
logical/verbal representation (mimic) of the problem
entity developed for a particular study; and the
computerized model is the conceptual model implemented
on a computer. The conceptual model is developed
through an analysis and modelling phase, the computer—
ized model is developed through a computer programming
and {mpLementation phase, and inferences about the
problem entity are obtained by conducting computer ex—
periments on the computerized model in the expe/iimen-
tation phase.

We relate validation and verification to this simpli-
fied version of the modelling process as shown in
Figure 1. Conceptual model validity is defined as
determining that the theories and assumptions under-
lying the conceptual model are correct and that the
model representation of the problem entity is "reason-
ble" for the intended use of the model. Computerized
model verification is defined as ensuring that the
computer programming and implementation of the concep-
tual model is correct. Operational validity is de—
fined as determining that the model's output behavior
has sufficient accuracy for its intended purpose or
use over the domain of the model's intended applica-
tion. Data validity is defined as ensuring that the
data necessary for model building, model evaluation
and testing, and conducting the model experiments to
solve the problem are adequate and correct.

Several models are usually developed in the modelling
process prior to obtaining a satisfactory valid model.
During each model iteration, model validation and
verification are performed [Sargent (1984)]. A varie—
ty of (validation) techniques are used, which are
described below. Unfortunately, no algorithm or pro-
cedure exists to select which techniques to use. Some
of their attributes are discussed in Sargent (1984).

2. VALIDATION TECHNIQUES

This section describes various validation techniques
(and tests) used in model verification and validation.
Most of the techniques described here are found in the
literature (see Balci and Sargent (1980, 1984) and
Sargent (1982) for a detailed bibliography], although
they may be described slightly different. They can be
used either subjectively or objectively. (By objec~
tively, we mean using some type of statistical test

or procedure, e.g., hypothesis tests, goodness-of-fit
tests, and confidence intervals.) A combination of
techniques is usually used. These techniques are used
for verifying and validating both the submodels and
the overall model.

Comparison fo Other Models: Various results (e.g.
outputs) of the simulation model being validated are
compared to results of other (valid) models. For
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example, simple cases of a simulation model may be
compared to known results of analytic models. (In
some cases, the model being validated may require
minor modifications to allow comparisons to be made
between it and analytic models.)

Degenerate Tests: The degeneracy of the model's be-
havior is tested by removing portions of the model or
by appropriate selection of .the values of the input
parameters. TFor example, does the average numbexr in
the queue of a single sexrver continue to increase with
respect to time when the arrival rate is larger than
the service rate.

Event Validity: The "events" of occurrences of the
simulation model are compared to those of the real
system to determine if they are the same. An example
of events are the deaths in a given fire department
simulation.

Extreme-Condition Tests: The model structure and out—
put should be plausible for any extreme and unlikely
combination of levels of factors in the system, e.g.,
if in-process inventories are zero, production out—
put should be zero. Also, the model should bound and
restrict the behavior outside of normal operating
ranges.

Face validity: Face validity is asking people know-
ledgeable about the system whether the model and/or
its behavior is reasonable, This technique can be
used in determining if the logic in the model flow-
chart is correct and, if a model's input-output rela-
tionships are reasomnable.

Fixed Values: Fixed values are used for all model
input and internal variables. This should allow
checking the model results against hand calculated
values.

Histonical Data Validation: If historical data exist
(or if data is collected on a system for building or
testing the model), part of the data is used to builld
the model and the remaining data is used to determine
(test) if the model behaves as the system does. (This
testing is conducted by driving the simulation model
with either Distributions or Traces [Balci and

Sargent (1982a, 1982b, 1983a)]).

Histonical Methods: Three historical methods of val-
idation are Rationalism, Empiricism, and Positive
Economics, Rationalism assumes that everyone knows
whether the underlying assumptions of a model are true.
Then logic deductions are used from these assumptions
to develop the correct (valid) model. Empiricism re-
quires every assumption and outcome to be empirically
validated. Positive Economics requires only that the
model be able to predict the future and is not con~
cerned with its assumptions or structure (causal re-
lationships or mechanisms).

Internal Validity: Several replications (rums) of a
stochastic model are made to determine the amount of
internal stochastic variability in the model. A high
amount of variability (lack of consistency) may cause
the model's results to be questionable, and, if typ-
ical of the problem entity, may question the appro-
priateness of the policy or system being investigated.

Muttistage Validation: Naylor and Finger (1967) pro-
posed combining the three historical methods of
Rationalism, Empiricism, and Positive Economics into
a multistage process of validation. This validation
method consists of (1) developing the model's assump-
tions on theory, observations, general knowledge, and
intuition, (2) validating the model's assumptions
where possible by empirically testing them, and (3)
comparing (testing) the input-output relationships of
the model to the real system.

Operational Graphics (animation): The model's opera—
tional behavior is displayed graphically as the model
moves through time. Examples are (i) the graphical
plot of the status of a server as the model moves
through time, i.e., is it busy, idle, or blocked, and
(ii) the graphical display of parts moving through a
factory.

Parameten Varniability - Semsitivity Analysis: This
validation technique consists of changing the values
of the input and internal parameters of a model to
determine the effect upon the model and its output.
The same relationships should occur in the model as

in the real system. Those parameters which are sensi-
tive, i.e., cause significant changes in the model's
behavior, should be made sufficiently accurate prior
to using the model. (This may require iterations in
model development.)

Predictive Validation: The model is used to predict
(forécast) the system behavior and comparisons are
made to determine if the system behavior and the
model's forecast are the same. The system data may
come f£rom an operational system or specific experi-
ments may be performed, e.g., field tests.

Thaces: The behavior of different types of specific
entities in the model are traced (followed) through
the model to determine if the model's logic is correct
and if the necessary accuracy is obtained.

Turning Tesis: People who are knowledgeable about the
operations of a system are asked if they can discrim-
inate between system and model outputs. (See
[Schruben (1980)] for a statistical procedure for
Turing Tests.)

3. DATA VALIDITY

Even though data validity is usually not considered
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part of model verification and validation, we discuss
it because it is usually difficult, time consuming,
and costly to obtain sufficient, accurate and appro-
priate data, and is frequently the reason that initial
attempts to validate a model fail. Basically, data is
needed for these purposes: for building the concep-
tual model, for validating the model, and for perform-
ing experiments with the validated model. In model
verification and validation, we are concerned only
with the first two types of data.

To build a conceptual model, we must have sufficient
data about the problem entity in order to develop the
mathematical and logical relationships in the model
for it to adequately represent the problem entity for
its intended use. It is also highly desirable to have
data to develop theories that can be used in building
the model and to test the model's underlying assump-—
tions, The second type of data desired is behavior
data on the problem entity to be used in the opera-
tional validity step of comparing the problem entity's
behavior with the model's behavior. (Usually, these
data are system input/output data.) If these data are
not available, high model-confidence usually cannot be
obtained because sufficient operational validity can-—
not be achieved.

The concern with data is that appropriate, accurate
and sufficient data are available, and if any data
transformations are made, such as disaggregation, they
are correctly performed. Unfortunately, there is not
much that can be done to ensure that the data are
correct. The best that one can do is to develop good
procedures for collecting data; test the collected
data using such techniques as internal consistency
checks and screening for outliers and determine if any
outliers found are correct; and develop good proce-
dures to properly maintain the collected data. If the
amount of data is large, a data base should be devel-
oped and maintained.

4. CONCEPTUAL MODEL VALIDATION

Conceptual model validity is determining that the
theories and assumptions underlying the conceptual
model are correct and that the model representation of
the problem entity and the model's structure, logic,
and mathematical and ‘causal relationships are "reason-
able" for the intended use of the model. The theories
and assumptions underlying the model should be tested,
if possible, using mathematical analysis and statisti—
cal methods on problem entity data. Examples of
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theories and assumptions are linearity, independence,
stationary, and Poisson arrivals. Examples of appli-
cable statistical methods are fitting distributions to
date, estimating parameter values, e.g., mean, vari-
ance, and the correlation b&tween data observations,
and plotting data to see if it is stationary. In addi-
tion, all theories used should be reviewed to ensure
they were applied correctly; for example, if a Markov
chain is used, are the states and transition proba-
bilities correct?

Next, each submodel and the overall model must be eval-
uated to determine if their abstractions are reasonable
and correct for the intended use of the model. This
should include determining if the appropriate detail
and aggregate relationships have been used for the
model's intended purpose, and if the appropriate
structure, logic, and mathematical and causal relation—
ships have been used. The primary validation tech-
niques used for these evaluations are face validiation
and traces. Face validation is having an expert or
experts of the problem entity evaluate the conceptual
model to determine if they believe it is correct and
reasonable for its purpose. This usually means exam—
ining the flowchart model or the set of model equa-
tions. The use of traces is the tracking of entities
through each submodel and the overall model to deter—
mine if the logic is correct and the necessary

accuracy is maintained. If any errors are found in

the conceptual model, it must be revised and concep-
tual model validation performed again.

5. COMPUTERIZED MODEL VERIFICATION

Computerized model verification is ensuring that the
computer programming and implementation of the concep-
tual model is correct. To help ensure that a correct
computer program is obtained, program design and
development procedures found in the field of Software
Engineering should be used in developing and imple-
menting the computer program. These include such
techniques as top-down design, structured programming
and program modularity. A separate program module
should be used for each submodel, the overall model,
and for each simulation function (e.g. time-flow mech-
anism, random number and random variate generators,
and integration routines) when using general purpose
higher order languages, e.g. FORTRAN, and where possi-
ble when using simulation languages [Chattergy and
Pooch (1977)1].

One should be aware that the use of different types of

OBSERVABLE NON~OBSERVABLE
SYSTEM SYSTEM
SUBJECTIVE « COMPARISON OF DATA USING « EXPLORE MODEL BEHAVIOR .
APPROACH GRAPHICAL DISPLAYS
» EXPLORE MODEL BEHAVIOR o COMPARISON TO OTHER
MODELS
0BJECTIVE « COMPARISON OF DATA USING « COMPARISON TO OTHER
APPROACH STATISTICAL TESTS AND MODELS USING STATISTICAL
PROCEDURES TESTS AND PROCEDURES
Figure 2: Operational Validity Classification
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computer languages effects 'the probability of having
a correct program. The use of a special purpose sim-
ulation language, if appropriate, generally will
result in having less erxors than if a general purpose
simulation language is used, and using a general pur-
pose simulation language will generally result in
having less errors than if a general purpose higher
order language is used. WNot only does the use of sim~
ulation languages increase the probability of having a
correct program, they also reduce programming time.

After the computer program has been developed, imple-
mented, and hopefully most of the programming "bugs"
removed, the program must be tested for correctness
and accuracy. First, the simulation functions should
be tested to see if they are correct. Usually
straight forward tests can be used here to determine
if they are working properly. Next, each submodel and
the overall model should be tested to see if they are
correct. Here the téesting is much more difficult,
There are two basic approaches to testing: static and
dynamic testing (analysis)[Fairley (1976)]. In static
testing, the computer program of the computerized
model is analysed to determine if it is correct by
using such techniques as correctness proofs, struc-
tured walk-through, and examining the structure prop-
erties of the program. The commonly used structured
walk-through technique consists of each program
developer explaining their computer program code
statement by statement to other members of the model-~
ling team until all are convinced it is correct (or
incorrect).

In dynamic testing, the computerized model is executed
under different conditions, and the values obtained
are used to determine if the computer program and its
implementations are correct. This includes both the
values obtained during execution and the final values.
There are three different strategies to use in dynamic
testing: bottom-up testing which means testing the
submodels first and then the overall model; top-down
testing which means testing the overall model first
using programming stubs (sets of data) for each of the
submodels and then testing the submodels; and mixed
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testing, which is using a combination of bottom~up and
top—down testing [Fairley (1976)]. The techniques
commonly used in dynamic testing are traces, investi-
gations of input-output relations using the validation
techniques, internal consistency checks, and repro-
gramming critical components to determine if the same
results are obtained. If there are a large number of
variables, one might aggregate to reduce the number of
tests needed or use certain types of design of exper-
ments [Kleijnen (1974, 1982)], e.g. factor screening
experiments [Smith and Mauro (1982)] to identify the
key variables, in order to reduce the number of exper-
imental conditions that need to be tested.

One must continuously be aware in checking the correct-

ness of the computer program and its implementation,
that errors may be caused by the data, the conceptual
model, the computer program, or the computer implemen—
tation.

6. OPERATIONAL VALIDITY

Operational validity is primarily concerned with de-
termining that the model's output behavior has the
accuracy required for the model's intended purpose
over the domain of its intended application. This is
where most of the validation testing and evaluation
takes place. The computerized model is used in opera-
tional validity and thus any deficiencies found can
be due to an inadequate conceptual model, an improper-—
1y programmed or implemented conceptual model on the
computer (e.g., due to programming errors or insuf-
ficient numerical accuracy), or due to invalid data.

All of the validation techniques discussed in section
2 are applicable to operational validity. Which
techniques and whether to use them objectively or sub—
jectively, must be decided by the model developer and
other interested parties. The major attribute effect-
ing operational validity is whether the problem entity
(or system) is observable or not, where observable
means it is possible to collect data on the operation-
al behavior of the program entity. Figure 2 gives one
classification of the validation approaches for opera-
tional validity. The "explore model behavior' means
to examine the behavior of the model using appropriate
validation techniques for various sets of experimental
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conditions from the domain of the model's intended
use.

To obtain a high degree of confidence in a model and
its results, comparison of the model's and system's
input-output behavior for at least two different sets
of experimental conditions is usually required. There
are three basic comparison approaches used: (i) graphs
of the model and system behavior data, (ii) hypothesis
tests, and (iii) confidence intervals.

6.1. Graphical Comparison of Data

The model's and system's behavior data are plotted on
graphs for various sets of experimental conditions to
determine if the model's output behavior has suffi-
cient accuracy for its intended purpose. A variety of
graphs showing different types of measures and rela-
tionships are required. Examples of measures and
relationships are (i) time series, means, variances,
and maximums of each output variable, (ii) relation-
ships between parameters of each output variable, e.g.
means and standard deviatioms, and (iii) relationships
between different output variables. (See Figure 3

for an example of a graph.) It is important that the
appropriate measures and relationships be used in
validating a model and that .they be determined with
respect to the model's intended purpose. As an exam-—
ple of a set of graphs used in the validation of a
model, see Anderson and Sargent (1974).

These graphs are used in model validation in three
ways. First, the model developer can use the graphs
in the model development process to make a subjective
judgement on whether the model does or does not pos-
sess sufficient accuracy for its intended purpose.
Secondly, they can be used in the face validity tech-
nique where experts are asked to make subjective judg-
ments on whether a model does or does not possess
sufficient accuracy for its intended purpose.

The third way the graphs can be used is in Turing
Tests. Sets of data from the model and from the sys-
tem are plotted on separate graphs. The graphs are
shuffled and then experts are asked to determine which
graphs are from the system and which are from the
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model. The results for each measure and relationship
can be evaluated either subjectively or statistically.
The subjective method requires that a subjective de-
cision be made whether the results are satisfactory or
not. The statistical method requires that the results
be analyzed statistically. See Schruben (1980) for a
variety of statistical methods for analyzing the
results of Turing Tests and examples of their use.

6.2. Hypothesis Tests

Hypothesis tests can be used in the comparison of
parameters, distributions, and time series of the
output data of a model and a system for each set of
experimental conditions to determine if the model's
output behavior has an acceptable range of accuracy.
An acceptable range of accuracy is the amount of
accuracy that is required of a model to be valid for
its intended purpose.

The first step in hypothesis testing is to state the
hypotheses to be tested:

H : Model is valid for the acceptable range of
accuracy under the set of experimental condi-
tiomns. (1)

H,: Model is invalid for the acceptable range of
accuracy under the set of experimental condi-
tions.

Two types of errors are possible in testing the hy-
pothesis in (1). The first or type I error is reject-
ing the validity of a valid model; the second or type
I1 error is accepting the validity of an invalid
model. The probability of a type error I is called
model buildern's nisk (o) and the probability of type II
error is called model usen's aisk (B). In model val-
idation, model user's risk is extremely important and
must be kept small. Thus both type I and type II
errors must be considered in using hypothesis testing
for model wvalidation.

The amount of agreement between a model and a system
can be measured by a validity measuwre, A. The valid-
ity measure is chosen such that the model accuracy or
the amount of agreement between the model and the
system decreases as the value of the validity measure
increase. The acceptable range of accuracy can be
used to determine an acceptable validity range,
0<A<A”,

The probability of acceptance of a model being valid,
P,, can be examined as a function of the validity
measure A by using an Operating Characteristic Curve
(Miller and Freund (1977)). Figure 4 contains three
different operating characteristic curves to illustrate
how the sample size of observations affect P, as a
function of A. As can be seen, an inaccurate model
has a high probability of being accepted if a small
sample size of observations are used and an accurate
model has a low probability of being accepted if a
large sample size of observations are used. The loca-
tion and shape of the operating characteristic curves
is a function of the statistical technique being used,
the value of o chosen for A=0, a”, and the sample size
of observations. Once the operating characteristic
curves are constructed, the intervals for the model
user's risk B(A) and the model builder's risk o can
be determined for a given A" as follows:

* *
o < model builder's xisk o < (1-8)
% (2)

0 < model user's risk B(A) < B .
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Thus, there is a direct relationship among builder's
risk, model user's risk, acceptable validity range,
and sample size of observations. A tradeoff among
these must be made in using hypothesis tests in model
validation.

In those cases where the data collection cost is sig-
nificant for either the model or system, the data
collection cost should also be considered in pexrform-
ing the tradeoff analysis. A cost model for data
collection should be developed as a function of the
sample sizes of observations for the model and the
system. An optimization problem can be formulated
and solved to determine the optimum sample sizes for
a given data collection budget and statistical test to
minimize the model user's risk.

Data can be generated for different values of the
tradeoff parameters and placed in schedules which can
be used to generate two different types of curves to
be used in the tradeoff analysis. One type of curve
is the operating characteristic curve shown in Figure
4. The other type of curve is shown in Figure 5, The
latter curve shows the relationships among a*, B*, and
the data collection budget (or sample sizes if data
collection cost is not considered) for a given model
accuracy. These curves can be used by the model de—
veloper, model sponsor, or both to aid in making judg-
ment decisions in regard to determining the appropri~
ate values to use in testing the validity of a model
for a given set of experimental conditionms.

Details of the methodology of using Hypothesis Tests
in comparing model's and system's output data for
model validations are given in Balci and Sargent
(1981a). Examples of the application of this method-
ology in the testing of output means for model valida—
tion are given in Balci and Sargent (1982a, 1982b,
1983a) and in Banks and Carson (1984).

6.3. CGonfidence Intervals

Confidence intervals (c.i.), simultaneous confidence
intervals (s.c.i.), and joint confidence regions
(j.c.r.) can be obtained for the differences between
the population parameters, e.g. means and variances,
and distributions of the model and system output
variables for each set of experimental conditions.
These c.i., s.c.i., and j.c.r. can be used as the
model range of accuracy for model validation.

To construct the model range of accuracy, a statisti-
cal procedure containing a statistical techmnique and

a method of data collecfion must be developed for each
set of experimental conditions and for each type of
parameters of interest. The statistical techniques
used can be divided into two groups; (A) univariate
statistical techniques and (B) multivariate statisti-
cal techniques. The univariate techniques can be used
to develop c.i. and with the use of the Bonferroni
inequality [Law and Relton (1982)] s.c.i. The multi-
variate techniques can be used to develop s.c.i. and
j.c.r. Both parametric and nonparametric techniques
can be used.

The method of data collection used must satisfy the
underlying assumptions of the statistical technique
being used. The standard statistical techniques and
data collection methods used in simulation output
analysis can be used for developing the model range of
accuracy; namely (1) replication, (2) batch means,

(3) regenerative, (4) spectral,, (5) time series, and
(6) standardized time series [Banks and Carson (1984),
Law and Kelton (1982), Law (1983)].

It is usually desirable to comstruct the model range
of accuracy with the lengths of the c.i. and s.c.i.
and the sizes of the j.c.r. as small as possible. The
shorter the lengths or the smaller the sizes, the more
useful and meaningful the specification of the model
range of accuracy will usually be. The lengths and
the sizes of the joint confidence regions are affected
by the values of confidence levels, variances of the
model and system response variables, and sample sizes.
The lengths can be shortened or sizes made smaller by
decreasing the confidence levels. Variance reduction
techniques [Law and Kelton (1982)] can be used in some
cases when collecting observations from a simulation
model to decrease the variability and thus obtain a
smaller range of accuracy. The lengths can also be
shortened or the size decreased by increasing the
sample sizes. A tradeoff analysis needs to be made
among the sample sizes, confidence levels, and esti-
mates of the length or sizes of the model range of
accuracy. In those cases where the cost of data
collection is significant for either the model or
system, the data collection cost should also be con-
sidered in the tradeoff analysis. Details of a
methodology for performing a tradeoff analysis and for
using c.i., s.c.i., and j.c.r. can be found in Balci
and Sargent (1981b, 1983b). Law and Kelton (1982)
also discuss the use of c.i. for model validation.

7. RECOMMENDED MODEL VALIDATION PROCEDURE

There are currently no algorithms or procedures avail-
able to identify specific validation techniques, sta-
tistical tests, etc. to use in the validation process.
Various authors suggest (for example, see Shannon
[1975, p. 29] that as a minimum the three steps of

(1) Face Validity, (2) Testing of the Model Assump-
tions, and (3) Testing of Input-Output Transformations
be made. These recommendations are made in general
and are not related to the steps of the modelling pro-
cess discussed in the Introduction.

This author recommends that, as a minimum, the follow-
ing steps be performed in model validation:

(1) An agreement be made between (i) the modelling
team and (ii) the model sponsors and users (if
possible) on the basic validation approaches and
on a minimum set of specific validation techniques
to be used in the validation process prior to de-
veloping the model.

(2) The assumptions and theories underlying the model
be tested, if possible.

(3) In each model iteration, at least face validity be
performed on the conceptual model.

(4) In each model iteration, exploration of the
model's behavior be made using the computerized
model.

(5) In at least the last model iteration, comparisons
be made between the model and system behavior
(output) data for at least two sets of experimen-
tal conditions, if possible.

(6) Validation discussed in the model documentation.

8. SUMMARX

Model validation is ome of the most critical issues
faced by the simulationist. Unfortunately, there is
no set of specific tests that can be easily applied to
determine the validity of the model. Furthermore, no
algorithm exist to determine what techniques or
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procedures to use. Every new simulation project pre-
sents a new and unique challenge.

There is a considerable literature on verification and
validation [Balci and Sargent (1980, 1984)]. Articles
given in the references can be used as a starting
point for furthering your knowledge on verification
and validation.
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