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ABSTRACT

This paper describes the application of experimental
design techniques to computer simulation. Three
principal areas of experimental design are consider-
ed: (1) factor screening experiments; (2) experi-
ments of comparison; and (3) response surface method-
ology.

INTRODUCTION

Simutation can be defined as the establishment of a
mathematical-logical model of a system and the exper-
imental manipulation of that model on a digital
computer. This definition emphasizes two principal
activities in computer simulation; (1) model develop-
ment, and (2) experimentation. This paper concen-
trates on the second of these activities, and assumes

that the simulationist has already developed a valid-

model of the system under study.

The simulationist attempts to utilize the simulation
model to gain an understanding of the relationships
between a set of system responses n., j=1, ..., m
and a set of controllable factors x7, i =1, ..., n.
These relationships take the form

nj = gj(xl,...,xn), i=1,...,m (@D)

which are unknown to the simulationist. But by con-

ducting a simulation trial at a point Xh, using a set

of random number streams Sh where Xh is the n-vector

of values (x1 ,xzh .,x ) and Sh is the p-vector
of seeds (S h

1 2 . S ) the s1mu1at1on1st is able
to observe a set of t1me series {yJ (t)}, i=1,

. yM, where yj (t) represents the measured value of
the j-th response variable nj at time t for the h-th

simulation trjal. Unlike physical experimentation,
which typically involves setting the values of the

controllablie factors at Xh and directly observing an

m-vector of physical values Yh, simulation requires a

judicious selection of the initial seeds Sh for the
random number streams that are used to generate the
various random processes embedded in the model, as
well as a choice of the duration of the trial. The
duration is typically either (a) a fixed number of
realizations N of a given response nj, (b) a fixed

period of simulated time T, or {c) the achievement of
a specified state of the system. The experimental
design procedures discussed in this paper are gen-
erally applicable to any of these three approaches
for choosing the duration of the simulation.

Now the observed value yj of a given system response

nj as a result of a simulation trial has the form

yj=gj(xlyx2)---’xn)+8‘a j=1,~-~’m (2)

J
where Ej has mean E(sj) =

cjz. That is,

0 and variance Var (sj) =

s =N tEL, J=1,00., 2
Yi =0y tegd 1, m (2a)

Now y. actually represents the mean of a time series
s rj, where r. is the

number of such realizations recorded during the
simulation. That is,

of realizations g.z, 2=1,...

s
.].'_. J i =
" il ng i=1,...,m (3)

The varjance of this time series can be estimated by
the relation

2 =l 2 . 2
T D 25152 "3 )

The estimates yj and 5j2 are unbiased estimates of nj
and cjz, respectively, where on is the true variance

of the response nj. If the succession of realiza-

tions £, = 1,...,rj are not independent, it is
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necessary to employ other formulae to compute the
variance of this time series. Fishman [4] discusses
techniques for doing this.

In the following sections, we shall restrict our

attention to a single system response n as a function

of the n-vector of controllable factors X35 i=1,
.,h.

FACTOR SCREENING EXPERIMENTS

0f the n controliable factors in a computer simula-
tion model, k < n of these are also controllable in
the real-world system. In addition to these, there
is also a set of n~k controllable factors in the
model that represent uncontrollable parameters in the
real environment, but the simulationist 1is also
interested in determining the response of the system
to changes 1in these uncontrollable factors. For
instance, 1in a model of a naval engagement, ship
speed and rate of antimissile fire might be factors
that are controllable by the commander in the real
system, whereas weather effects and rate of enemy
missile fire are factors beyond the commander's
direct control. But the simulationist would attempt
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to measure the effects of each of these factors on
the system response, which might be "probability of
victory.® In the simulation model, all of these
factors would be controllable.

In general, not ail of the n factors are equally
important with respect to their effect on the re-
sponse . In factor screening, we attempt to isolate
those factors which are highly important from those
which are negligible. If g < n factors exert im-
portant effects on n, we seek to have an experimental
design indicate which factors these are. Jacoby and
Harrison [5] discuss these concepts. Montgomery [8]
has produced an up-to-date treatment of this subject.

In factor screening, it is generally assumed that the
relative importance of a set of n factors can be

established by examining the coefficients B; in the
Tinear model
n
y=B,+t Z BiX: te (5)
0 44 i

To perform an experiment with the simulation model,
we perform simulation trials at each of a set of
settings of X which involve one or more levels of
each of the n controllable variables Xi» i=1,...,n

The method of least-squares is then employed to
estimate the main effects and 1interactions. From
this analysis, the g most important factors are
identified.

Some of the experimental designs employed in factor
screening include the following:
. 2" factorial

simulation trial at each of the N = 2"
design points.

experiments, involving a

. 2"P fractional facterial designs, where n

is large and 2" simulations represent a
very costly investment.

. Supersaturated plans, in which each of the
n factors appears at high and low levels
N/2 times, N < n.

. Groups screening designs, in which h groups
of the n factors are identified, each such
group is considered a single factor, and a

Zh factorial or 2h~p fractional factorial
design is employed to evaluate these group
effects.

An important consideration in factor screening is
that of variance reduction. Because simulation
produces a times series of realizations &,, £ =1,
...,r for the response n, where the time %eries is
induced by a series of pseudorandom numbers, it is
possible to reduce the variance of the time series by
judicious selection of these pseudorandom numbers.
Two well-known variance reduction techniques are as
follows:

. Common pseudorandom numbers, where the same
set of initial random number seeds S are
employed for each simulation trial in the
designed experiment.

. Antithetic pseudorandom numbers, where the
series of random numbers for one stream R'
is the complement of another stream R; that
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is, r' =1 - r for each successive pseudo-
random number.

Fishman [4] discusses variapce reduction in simula~-
tion experiments. Schruben and Margolin [10] de-
scribe a very useful techniques for pseudorandom
number assignment in simulation experiments.

EXPERIMENTS OF COMPARISONS

Some of the n controllable factors are such that they
assume quantitative levels 1in the experimental de-
sign. For example, ship speed and rate of anti-
missile fire are quantitative variables which can be
set at selected levels over a continuum of values a,

< xi £ b;j- Other controllable factors are definitely

qualitative in nature. For example, the sea state
could be calm, high seas, or stormy. In many simula-
tion situations, the simulationist seeks to compare
the response n at one level of a controllable factor
to that at a different level. Such evaluations are
called "experiments of comparison." The controliable
variables in such experiments are called factors, and
the different levels of each factor are called treat-
ments. -

The principal experimental designs employed with
experiments 'of comparison are as follows:
n

. 2" factorial designs (Biles and Swain [2]
or Montgomery [81).

. 2"7P fractional factorial designs (Box and
Hunter [3]).

These designs are illustrated in Figure 1.
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Figure 1: 2" Factorial Designs

Biles and Swain [2] and Montgomery [8] discuss
analysis of variance procedures by which the simula-
tion results obtained from factorial designs are
evaluated. These techniques enable the simulationist
to test the null hypotheses that the individual
factors exert no influence on the behavior of the
system response n, or that two-factor interactions
exert no effects. As with the factor screening
experiment, it is necessary to adopt either common
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pseudorandom numbers or antithetic pseudorandom
numbers to minimize the variance of the estimates.

RESPONSE SURFACE METHODOLOGY

Factor screening and experiments of comparison are
not the only objectives the simulationist might have
with respect to simulation experimentation. Often it
is necessary to utilize the simulation model to
attempt to find the optimum conditions for operating
the system. These optimum conditions are here
denoted as X* and n*.

The body of techniques by which one experimentally
seeks an optimum set of system conditions is called
response surface methodology. The follewing sections
describe first and second order response surface
methods as they relate to simulation experimentation.

First-Order Response Surface Methods

First-order response surface methods attempt to
accomplish experimentally what the "method of steep-
est ascent" accomplishes computationally. From a

current point Xk, a designed experiment is conducted
(with a simulation trial at each design point) to

estimate the gradient direction Vg(Xk). Simulation
trials are then conducted at points along this direc-

tion to a new point Xk+1

solution obtained along the direction Vg(Xk). This
process 1is an experimental approximation of the
relation

k+l

which represents the best

X k

= x% + A¥rugexfn (6)
The step length Ak can be estimated by a line search
or by a regression procedure as described by Biles

and Swain [1,2].

The gradient direction Vg(Xk) is estimated by placing
an appropriate first-order experimental design, such

as a w factorial, w' P fractional factorial, or
n~dimensional simplex design (Biles and Swain [2])

around the current point Xk. A simulation trial is
performed at each point in the selected experimental
design. From these N observations the multiple
Tinear regression model

~ n
y=b + I b.x; (7
0 oy 1

can be estimated. Since the gradient direction

Vg(Xk) is mathematically defined as the n-vector of
first partial derivatives of g(X) evaluated at Xk, it

is clear that Vg(Xk) is simply the n-vector of re-
gression coefficients, exclusive of the bo term; that
is,

gx) = by, b)) ®)
In the multiple-response simulation problem, a simu-
tation trial is conducted at each design point in the

selected first-order design and the m observations

y?, j=1,...,m are recorded at each design point.

n

Muttiple Tinear regression is applied separately to
each set of observations (assuming independence among
the m responses), producing the m models

i=1,...,m 9

n

. . + . X
P R RS R

and hence the m gradient vectors

k: o9 =
ng(X ) <bj,1"“’bj,n) , J=1,....m (10)

These estimates can then be employed in any one of
several optimization schemes to produce an improved

solution Xk+1. A generalized procedure for accom-

plishing this improved solution, and an estimated
“optimum,"” will be described later. But first it is
necessary to give attention to the experimental
designs employed to estimate the gradient vectors

ng(xk), j=1,...,m

In selecting a first-order response surface design,
it is usually desirable to minimize the varjances of
the regression coefficients b,, i=1,...,n. To
accomplish this the first-order experimental design
should be orthogonal. An orthogonal first-order
experimental design is constructed as follows: The
placement of the N experimental points (in our case,
simulation trials) is described by the N by n design
matrix D, where

11 *a "n11
12 %22 Xn2

D= . ay
IN %o XN

An N by n+l matrix X is then formed by placing a unit
vector to the left of D. Thus

[ ]
IoXqp X1 +o0 ¥ym
1 X150 X9 . X0
D= . (12)
Ll XqN Xop v XoN

It is usually convenient to code the design levels,
so that the following conditions are achieved:

-

2 X%u =N
u=1
> i=1,...,n (13)
N
51 Xiu = 0

If the actual value of the u-th level of the i-th
variable is Ziys then the corresponding coded value
is

X, = T‘ as)
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- N
z; = E Z: /N (15)
=1
and
N -2
5 = u§ (2,720 (16)
Then
N 0 O 0
0 N O een
0 X'X = . (e¥)]

6 0 o ... N

Since the (n+l) - vector of regression coefficients b
is estimated by the least squares relation

=)t xy (18)

the condition scheme in (14) simplifies to b = N'¥X'y,
where y is the N-vector of response estimates ob~
tained from N simulation trials. The variance of the
regression coefficients bi’ i=1,...,n is given by

Var(b.) = o?/N, i =1,...,n (19)

where 02 is the variance of the error term e. Since
we are interested in m separate system response y.,
j=1,...,m, equations (18) and (19) can be generaq-
ized to

By= 0t x Fy, d=1,m (20)

Var(b,) = o?/N, i=2,...m §j=1,....m (21)

Again, with the coding scheme in (14), equation (20)

simplifies to b. = N 1X'y.. For an orthogonal first-
order design, the resultsdin (17)-(21) hold, giving a
so~called "minj um-variance" design. The 2" fac-
torial and 2 fractional factorial designs are
orthogonal and hence minimum variance, Orthogonal
n-simplex designs can be easily constructed (see
Biles and Swain [2]). Since n-simplex designs pro-
vide the minimum number of design points needed to
estimate the muitiple-linear regression models in (7)
or (9), and are hence the most "economical” of the
first-order response surface designs, they are es-
pecially attractive for the purpose proposed here.
Figure 2 il1lustrates n-simplex designs.

Two—Dimensional Simplex  Three—Dimensional Simplex

Figure 2: n-Simplex Designs

Biles and Swain [1,2] have described a first-order
response surface procedure for approaching the con-
strained formulation of the multiple-response simu-
lation problem. This procedure involves performing a

first-order design around a current point Xk to

estimate the gradient direction Vg(Xk) according to
relation (8). A 1ine search is then performed along

Vg(Xk) to estimate an optimal step A in (6). As long
as the search remains interior to the region bounded
by the constraints, the procedure is basically a
gradient search. If one or more constraints are
encountered, however, Biles and Swain [1,2] propose
that the gradient projection direction be followed.
The procedure for estimating the gradient projection
direction is as follows.

Suppose that at an estimated boundary point Xk, q
constraints are satisfied as equalities. Let Bq be

the n x q matrix of first partial derivatives of
these active constraints. Thus B_ consists of the g

gradient vectors ng(Xk), j=1,...,q. That s

agl/ax1 agq/ax1
B = . . 22
q : : (22)
‘ agl/axn 8gq/axn

Since g.(X), j =1,...,q9 denotes the set of binding
constraint functions, for the moment let f(X)krepre-
sent  the objective function. Then Vf(X™) and
Vgi(X ), i=1,...,q9 represent the gradient vectors
of " the objective and constraint functiqns, respec-
tively, evaluated at the boundary point X .

Performing a first-order response surface experiment
about the boundary point Xk yields estimates of the

gradient vectors Vf(Xk) and Vg.(Xk), i=1,...,9 in
the form of the vectors of reg}ession coefficients
The gradient projection direction 1is then given by

k. Kyq o \ =1la k
§° = [VF(XM] Bq(B qu) B q [vf(X™)] (23)

A Tine search is performed along direction Sk until
either (a) a local "optimum" is found, or (b) other
constraints are encountered. This new point is

denoted Xk+1. This procedure 1is, repeated until the
gradient projection direction S" 1is approximately
zero. This point X* is taken as a "constrained
optimal® solution. Figure 3 illustrates the applica-
tion of the gradient projection procedure to a con-

strained optimization problem.
® Factoriol Design Points

o Polynomial Regression Points

Constraining
Response

X
Figure 3: First-Order Responsé Surface Optimization
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The following generalized procedure js followed in
employing a first~order response surface approach to
the multiple-response simulation problem. The par-
ticular problem formulation and optimization pro-
cedure will govern the precise sequence of steps in
impTlementing this procedure.

1. Identify the known experimental region a;

<x1 <c i=1,...,n. Select a startin

point X within this region. With X0 as
its center, array an orthogonal first-order
response surface design within a selected
design radius. Place e = n/2>2 points at

the design center X0 (coded as a 0 - vec-
tor).

2. Perform simulation trials at each of the N
experimental design points and record the

responses g, j=1,...,m; £=1,...,N

Using multiple linear regression, fit
linear models of the form (9).

3.  Apply the appropriate mathematical program-
ming technique to locate the next center
point in the search.

4, Repeat steps 1-3 until an "optimum" solu-
tion is located. It may be appropriate to
add design points to complete a second-
order response surface design to test this
optimum solution. The procedure for ac-
complishing this is described in the next
section.

Second~Order Response Surface Methods

A second-order response surface approach to the
multiple-response simulation problem consists of one
ore more vrepetitions of a two-stage procedure:
(a) the execution of a computer simulation trial at
each point in a second-order response surface experi-
mental design covering the known experimental region,
and the use of multiple linear regression to fit
second-order regression models to the resulting data;
and (b) the application of a suitable mathematical
programming procedure to obtain a solution to the
resulting optimization problem. In contrast to the
first~order methods, in which the optimization pro-
cedure was part and parcel with the experimental
procedure, these procedures are distinct and sequen-
tial in the proposed second-order approaches.

The first step in the second-order approach is to
identify the range of each input variable. A safe
strategy is to cover the entire known region a.<x.
<ci® i=1,...,n with the first (and possibly oh]y}

experimental design. If we let o, denote the radius
of the n-dimensional hypersphere within which the
design points are contained, then

=(c; - a;)/2, i=1,....n (24)

is effectively the maximum radius we could construct.
It 1is convenient to adopt the coding convention
expressed in (14)-(16), but choosing x, in such a
way that g satisfied (24). Biles anH Swain [2]
describe this coding process.

The second-order fitted response surface has the form

~ n 2
y = b + X b X3 + z b Xe ¥
i=1 §=1 i1t

n n
& j§1 Pigi%y (25)

i#]
where y is the estimate of the true response n at a

given value X = (xl,...,xn) and the bi and bij are

regression coefficients in the fitted model. Since
we must estimate m separate response relationships,

equation (25) is modivied to

n n 2
Y T b ot A R i) PN
n n
2 .Z b XX (26)

Given the independence of the m responses, these m
regression equations can be estimated 1ndependent1y
from a set of N > (n+l) (n+2)/2 data points obtained
by performing a simulation trial at each point in a
second~order response surface design.

An experimental design employed for the purpose of
estimating the regression coefficients in (26) must
contain at least as many design points as there are
coefficients bi and bij in the fitted model, of which

there are (nt+l) (n+2)/2. Because of the non-
linearity of (26), the experimental design must also
have at 1least three 1levels of each controilable
variable X 1=1,...,n. It is also desirable to

have a design which is rotatable; that is, the pre-
dicted response y at some point X is a function only
of the distance from the design center to X and not a
function of the direction.

The most widely used design for fitting a second-
order model is the central composite design, shown in
Figure 4 for n=2 and n=3. These designs consist of a

2" factorial (or suitable fraction thereof), aug-
mented by wh axial points and k center points. A
central composite design can be made rotatable by
proper choice of a, the distance of the axial point
from the design center. With the proper choice of
the number of center points k, the central composite
design_ can be made either orthogonal or wuniform
precision.

Having estimated the m second-order regression equa-
tions (26) and formu]ated the appropriate optimi-
zation problem, it remains to apply mathematical
programming to obtain a solution. For the con~
strained formulation, any of the following procedures
could be employed: (a) Box's complex search;

(b) Rosen's gradient projection method; or (c) one of
Zoutendijk's methods of feasible d1rect1ons These
are described in Biles and Swain [2].
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11.

Figure 4: Central Composite Designs
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