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ABSTRACT

This paper reviews perspectives and methods for
specifying distribution and process forms and
parameters from which observations are drawn to drive
a stochastic simulation. All phases of input data
analysis are covered, including data collection,
choosing a modeling distribution, estimating
parameters, and goodness-of-fit testing. A discussion
is also presented concerning the debate over the
desirability of fitting "standard" distributions to
data as opposed to using a direct empirical
distribution. Available software packages with a
simulation orientation are also described.

INTRODUCTION

The modeling activity which stands at the beginning of
2 simulation study may be thought of as consisting of
two sequential activities: Structural and
guantitative. Structural modeling concerns the
development of physical and logical relationships and
interconnections composing the mechanism of the model;
for example, queue disciplines, single-stage or tandem
queues, and individual vs. batch arrivals.
Quantitative modeling, on the other hand, concerns
specification of the numerical attributes of the
model, and usually occurs after structural modeling;
examples include the maximum length allowed for a
queue, the number of servers, and the times and sizes
of arrivals of batches. In this paper it is assumed
that the structural modeling has been done, and it
remains to carry out the quantitative modeling.

One attribute of a simulation that has a great impact
on the nature of quantitative modeling is whether
there are any random inputs assumed to drive the
model. In a deterministic model, there is no
randomness in the inputs to the structural model; for
example, we assume there are three servers, a group of
4 customers arrives every 3.8 minutes, and each
customer reduires 6.8 minutes of service. 1In this
case the quantitative modeling task is simply to
determine the values of all needed constants.
Stochastic models allow for randomness in at least
some of the inputs driving the structural model.
Examples of input quantities that are typically
modeled stochastically are the times of machine
breakdowns, service times, and the number of items in
a batch of random size. Quantitative modeling of a
stochastic system is more involved than that for
deterministic systems, since we must specify
distribution (or process) forms, as well as the
numerical values of the parameters needed to specify
the chosen distributions and processes. This paper
will address issues involved in gquantitative modeling
for stochastic simulations. Since this modeling
activity determines the distributions and processes
from which sampling will take place to drive the

simulation, this topic is often referred to as input
data analysis.

DATA COLLECTION

The data collection phase of input analysis may seem
rather obvious, and in many cases will indeed be
straightforward. There are, however, several issues
that should be kept in mingd.

First, care should be taken that the correct quantity
or process be observed, and that all necessary
information is collected. If only a surrogate for the
desired quantity can be observed, inference about the
desired quantity is risky, and its validity may be
untestable. A prime example here would be simulation
of a proposed facility that does not exist, and we
attempt to collect data from "similar" systems
elsewhere. Worse, it may be possible to collect the
required data, but because of poor planning or lack of
foresight, we do not do so. This could occur if data
collection proceeds before there is a clear
understanding of just what will be needed in the
simulation; thus, it may be advisable to construct at
least a preliminary version of the model before data
are collected, to avoid overlooking any needed
information.

Second, the mechanics of data collection should be
thought about, and appropriate recording instruments,
forms, etc. be supplied. For example, if interarrival
times are to be collected, it is usually easier to
note successive times of arrivals, then difference
them later to obtain the desired interarrivals.

Third, since most of the statistical techniques used
in input analysis assume that the data are independent
and identically distributed (i.i.d.), care should be
taken, if possible, to meet this assumption. In
general, lack of independence can have a severe effect
on statistical procedures assuming independence (as we
have learned from simulation output analysis
methodological research). As a pre-test, one might
apply a test for independence (i.e., "randomness")
before proceeding with a formal input analysis
procedure; see, for example, Conover (1980).

Finally, there is a tacit assumption that the
observations in a data set are homogeneous, i.e., are
drawn from the same distribution or process. This
becomes an issue if, for example, observations on the
same quantity are gathered on several different days,
in an attempt to increase the sample size. Before
merging these separate days' data, a test for
homogeneity might be applied to justify such action;
one test for this purpose is the Kruskal-Wallis test
(see Conover [1980]).
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NO DATA?

While most of the literature and techniques concerning
specification of sampling distributions and processes
assume the availability of or opportunity to collect a
reasonable amount of data, this is sometimes (perhaps
often) an unaffordable or impossible luxury. In this
case, we are left with no really good alternatives,
but there may be some "rough" options to invoke,
involving specific distributions.

First, if we can somehow elicit values below which or
above which it is felt that observations would never
occur, one could (in the absence of other information)
posit a uniform distribution between these two extreme
values. This would apply in either the continuous or
discrete case.

Second, if we can, in addition to a minimum and
maximum, establish a "most likely" value (i.e., a
mode) between them, then a triangular distribution
would be determined; again, discrete and continuous
cases are covered.

Finally, if we have a continuous distribution and one
for which positive skewness is a reasonable
assumption, then specification of a minimum, maximum,
mode, and mean determines a beta distribution from
which samples could be drawn (see Law and Kelton
{19821). This is the most sophisticated of these
techniques, and requires the most information; it may
not be easy to elicit different values for the mode
and the mean, which would be reguired in this
approach. This method is often used to specify
durations of arcs in PERT networks. It should be
mentioned that, while the beta option results in a
smoother distribution than the uniform or triangular
options, it may result in a distribution from which
sampling during the simulation is considerably more
difficult.

A PRIORI CHOICE

In some situations there may be sufficient information
(or assumptions) to imply a distribution form, if not
the numerical value(s) of its parameter(s). For
example, if the quantity of interest is the sum (resp.
product) of a large number of other i.i.d. quantities,
then central limit theory considerations suggest a
normal (resp. lognormal) distribution. If the
quantity is the inter-event time of a process where
events occur “"at random” (i.e., at the same expected
rate and independently of each other), then the
exponential distribution is appropriate. Other such
physical models are discussed in Bratley, Fox, and
Schrage (1983). Even if we are fortunate enough to
have such a priori information, estimation of the
parameters of the implied distributions will probably
still be necessary.

TQO FIT OR NOT TO FIT?

Given a data set, there are two quite different routes
possible in using it to specify a distribution from
which to sample the corresponding quantity during the
simulation:

(a) "Fit" one (or several) "standard" distribution(s)
to the data, and use the resulting fitted
distribution.

(b) Use the data values directly to define an
empirical distribution which is then used in the.
simulation.

Route (a) has been the traditional approach, but has
recently been challenged in favor of (b) by Fox (1981)
and Bratley, Fox, and Schrage (1983). Most would
agree that (b) is preferred in the case that no
"standard" distribution can be found that adeguately
fits the observations. The debate occurs when (a)
does result in at least one candidate distribution
that adequately represents the data. Each side would
appear to have its own set of merits, which might be
summarized as follows:

In favor of (a):

1. There is less sensitivity to the particular data
set obtained. For example, there could have been
holes in the data set, i.e., intervals where
little or no data appeared. While this may be
characteristic, it may also have resulted from
simple sampling fluctuations. Fitting a
distribution will "smooth" out these features,
which may be anomalies with respect to the
underlying "true" process, while an empirical
distribution will result in generating such holes
in the data every time it is used in the
simulation. This consideration may be especially
relevant for small data sets.

2. Depending on how the empirical distribution is
specified, it may confine the generated values in
the simulation to the range covered by the
observed data set. A fitted distribution need not
have this restriction, if specified from a family
with infinite range.

3. There may be a priori grounds for using one of
the "standard" distributions (see above).

In favor of (b):

1. There is rarely reason to choose some particular
distribution form (e.g., gamma) to fit to the
data, other than the "spurious" similarity between
the data and the distribution. Furthermore, the
power of goodness-of-fit tests is generally low
(see Bratley, Fox, and Schrage [1983]), so that
failure to reject the null hypothesis that the
data appear to have come from the distribution
form in question is more a reflection of this lack
of power than of a good fit.

2. A distribution that is mostly empirical can easily
be specified, if desired, to have an infinite
right tail, so that simulated observations can be
generated beyond the range of the data (see
Bratley, Fox, and Schrage [1983]).

3. Empirical distributions are very easy to generate
from, needing only piecewise linear interpolation,
possibly with the inversion of an exponential tail
(see Bratley, Fox, and Schrage [1983, pp. 139-
140]); route (2) can result in distributions from
which generation is more difficult.

If route (b) is chosen, generation proceeds in a
straightforward manneér; the only computational
consideration is the need to sort the data, but this
is only done once. Thus, in the remainder of the
paper the steps for implementing route (a) will be
discussed.
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STEPS IN FITTING A DISTRIBUTION

We assume that route (a) has been chosen, and that a
univariate distribution is to be specified from the
available data. The steps outlined below are covered
in detail in Law and Kelton (1982). See also Johnson
and Kotz (1969, 1970) for a wealth of information on
many distributions and their properties. -

Specifying a Distribution Form

The first step in fitting a distribution is to decide
what form, or "family," is to be considered., For
example, interarrival times may be assumed to have an
exponential distribution, or times between failures to
have a Weibull distribution. Short of a priori
determination (see above), there is no complete way to
arrive at a choice of distribution form. The usual
method is to rely on various heuristics to aid in an
informed choice. Such heuristics aret

1. Range Considerations. This is not really a
heuristic, and serves principally to rule out some
distributions on the basis of their range. For
example, if X is the proportion of time a
customer's service is to be attended to by a
particular server, then clearly 0 < X <1, so
using an exponential distribution for X is
inappropriate in view of the lack of an upper
limit on this distribution. Such considerations,
incidentally, make the normal distribution
inappropriate (strictly speaking) for modeling
activity durations, since any normal distribution
allows the possibility of negative values.

2. Histograms. In a certain sense, a histogram is
an unbiased estimator of the shape of a density
function (in the continuous case) or the
probability mass function (in the discrete case)
of the underlying distribution. Thus, a histogram
is drawn and compared with the density or mass
functions of candidate distributions.

3. Point Statistics. Sample means, variances, and
ratios of these may be compared with what would be
expected from various distributions, particularly
whether the mean or variance (or standard
deviation) is larger. This may serve as a rough
guide, but it should be remembered that such
statistics may be quite variable.

4, Probability Plots. With a few exceptions, these
apply only in the continuous case, and measure the
similarity between the empirical cumulative
distribution function and the distribution
function of the candidate distributions. These
plots do not require an interval choice (as do
histograms), but must be re-plotted for each
candidate distribution. Further, if the
candidate distribution has shape parameters, they
may have to be pre-estimated. Without appropriate
software, probability plots may be difficult to
construct for some distributions. See in addition
Hahn and Shapiro (1967) for more information on
alternative forms of probability plots.

If none of the standard distributions appears
reasonable at this point, consideration should be
given to using an empirical distribution. If it
appears that some distribution(s) may fit, the next
step is parameter estimation.

Parameter Estimation

With a particular distributional form in mind, the
parameter(s) of it need to be estimated; this is the
actual "fit." Many methods of estimation are possible
(least squares, unbiased, method of moments, etc.),
but the most widely used and accepted methed is that
of maximum likelihood; this method also has the
advantage of at least partially justifying one of the
later goodness-of-fit tests. Basically, the principle
states that the best numerical values to assign to the
parameters are those which maximize the probability,
under the assumed distributional form, of obtaining
the particular data values which were observed (or
near those observed in the continuous case). Maximum
likelihood estimators (m.l.e.'s) enjoy several nice
statistical properties, such as asymptotic (as the
sample size grows) unbiasedness and normality.

Using the m.l.e. technique, one can also construct a
confidence interval (c.i.) for the parameter being
estimated (see Law and Kelton [1982, p. 191]); this is
quite useful in simulation, in the following sense.

As a model is being developed, there is always
uncertainty about the values of the parameters used.
If, on the basis of available data, we have a c.i, for
some true parameter, the simulation could be run with
this parameter set once at the lower endpoint and
again at the upper endpoint. If the simulation output
measures do not appear to be sensitive to this change,
then we would accept the m.l.e. as the parameter; if
significant sensitivity is displayed, however, we
might want to collect more data to get a better
estimate of this critical parameter.

The particular method of finding m.l.e.'s depends
vholly on the distributional form; sometimes it is
trivial and sometimes quite difficult. In particular,
numerical methods may be required to maximize the
likelihood function for a given data set. Sometimes
there are tables available to aid in this task, and
some of the software (see below) internally finds
m.l.e's for the available distributions.

Assessing the Fit

The final step is to perform goodness—of-fit tests to
check on the adequacy of the chosen distributional
form. The best-known and most widely applicable test
is the classical chi-squared test; it applies in
either the discrete or continuous case, but is only
asymptotically (as the sample size, not the number of
test intervals, grows) valid. Further, care must be
taken to choose the degrees of freedom correctly, in
view of the number of parameters being estimated.

One troublesome aspect of the chi-squared goodness-of-
fit test is the need to choose intervals for grouping
the data. The Kolmogorov-Smirnov (K-S5) test avoids
this grouping decision. Whereas the chi-squared test
may be thought of as a comparison of the empirical and
fitted densities, the K-S test measures the (maximum
vertical) distance between the empirical and fitted
cumulative distribution functions. 1In its original
form, the K-S test applies only to continuous
distributions whose fit did not use any of the data;
this is rarely the case in practice, so the test has
been extended to allow testing fit of several
distributions with estimated parameters. Care should
be taken to note that the K~$S test with estimated
parameters requires a separate table of critical
values for each different distribution; this point
seems to have been frequently missed.
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In addition to the chi-squared and K-S tests, there is
the Anderson-Darling test, as well as various
.Specialized tests for specific distributions, such as
normal and uniform. Finally, with so many possible
distributions and the possibility of applying several
tests, one could end up with a matrix full of test
statistics or p-values, with rows corresponding to
distributions and columns corresponding to types of
tests. This should serve only as a rough comparative
guideline on assessing goodness of fit, and no overall
significance level should be ascribed to these values
in a formal hypothesis-testing sense, due to the
(possibly severe) effect of the multiple comparisons
problem.

CORRELATION AND MULTIVARIATE MODELING

The above discussion has centered on choosing a
univariate distribution for a scalar random variable
in the simulation. 1If all the random variables in a
simulation are independent (or assumed to be so), this
will suffice since the univariate distribution choice
is just repeated for each random variable. If we want
to model dependencies among variables or specify a
complete multivariate distribution, however, other
considerations come into play. 'The importance of
explicitly including correlation in simulation input
modeling has been demonstrated by Mitchell, Paulscn,
and Beswick (1977) who showed that ignoring
correlation between service times in a tandem gueueing
system can result in serious errors in the output.

In the simplest case, we may feel that some random
variable X is correlated with some other random
variable Y, and that both has its own (marginal
univariate) distribution. No other assumptions are
modeled, i.e., we are not seeking to specify the
complete joint distribution of (X,¥). A direct
approach here is simply to fit distributions (or use
empirical distributions) for X and Y, and from the
same data estimate the correlation between X and Y.
While this presents no special difficulties, attention
must be paid in the simulation context to the need to
generate these correlated pairs (X,Y), which limits
the choice of marginal distributions. Of course,
normal (and thus lognormal) is a possibility, but
aside from this the choices are few due to limitations
on the ability to generate correlated random
variables. In particular, correlated gamma pairs are
possible (Schmeiser and Lal [1982]), as are correlated
_exponentials as a result.

The most general goal would be to specify a complete
joint distribution for a random vector (X,, ..., )
used as input to a simulation. This is afl ambitious
task; indeed, outside the normal (or lognormal) case,
there is not general agreement on just what a joint
distribution should be defined as, even in such simple
cases as marginal exponentials. In addition, data
requirements would probably be demanding. In the
multivariate normal case, specification of all
pairwise correlations determines the joint
distribution anyway, in which case we are in the
situation of the preceding paragraph. Thus, it would
seem that in most cases, the difficulties associated
with modeling an entire joint distribution would
preclude its use in simulation. Schmeiser and Lal
(1980) survey available continuous multivariate médels
amenable to simulation, and provide numerous
references. A general reference on continuous
multivariate distributions is Johnson and Kotz (1972).

NONSTATIONARY EVENT OCCURRENCES

A sitvation that seems to come up often enough in
applications to warrant special mention here is that
of a random process of events of some sort through
time which do not occur at a constant expected rate.
Important examples include customer arrivals to a
queueing facility throughout a period characterized by
"peak loads" and other times of relative inactivity,
traffic engineering that must deal with rush hours,
and reliability studies where machines are subjected
to varying levels of stress resulting in fluctuating
breakdown rates.

If such events are modeled as having i.i.d. interevent
times (e.g., exponential for a Poisson process), the
desired nonstationarity will not result. A particular
process model that has been found useful is a
nonstationary Poisson process (see Cinlar [1975])
which assumes, basically, that events occur
independent of one another but at an expected rate
that may be a function of time; this rate function may
thus be chosen to reflect rush hours, etc., and its
specification completely determines the structure of
the process. Estimating the rate function from data,
however, is problematic since we need to specify an
entire function as opposed to just a few parameters;
see Law and KRelton (1982) for a rough but practical
approach, or Lewis and Shedler (1976) for a more
sophisticated method assuming a particular functional
form with parameters to be estimated.

Although not really part of input analysis, it should
be mentioned that generating observations from a
nonstationary Poisson process is not as trivial as it
might seem. In particular, it is not valid to
generate the next interevent time as being exponential
with parameter being determined by the current value
of the rate function. Instead, the thinning algorithm
of Lewis and Shedler (1879) should be employed.

SOFTHARE

While conceptualizing the methodology of fitting
distributions may seem straightforward, implementing
many of the steps involved can lead quickly into some
involved computational difficulties. For example,
making a probability plot for a candidate gamma
distribution may require inverting its cumulative
distribution function, requiring special techniques
and thus special software. Moreover, most well-known,
general-purpose statistical analysis packages are not
really oriented to dealing with the wide variety of
distributions we would typically like to consider in
quantitative modeling for simulation; attention in
such packages usually focuses on normal distribution
theory. In this section three packages are mentioned
that were specifically designed for application to
some of the problems of distribution fitting in the
simulation context.

AID, available from Pritsker & Associates of West
Lafayette, Indiana, is an interactive graphics package
taking as input a data set to which a distribution is
to be fitted. The user specifies the desired
distribution form, a fit is made, and chi-squared and
K-5 tests are available. Two discrete distributions
(discrete uniform and Poisson) are allowed, and there
is provision for ten continuous distributions
(uniform, triangular, normal, lognormal, exponential,
Erlang, gamma, Weibull, beta, and beta-PERT [taking as
input the minimum, maximum, and mode, for PERT network
applications]). Much of the output is in graphical
form, for example, for the chi-squared goodness~of-fit
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test the density of the chi-squared distribution is
plotted with the test statistic and critical values
noted by vertical lines, and a plot is provided of the
sample cumulative distribution function with bands
around it showing how far a permissible deviation is
allowed under the assumed distribution.

UNIFIT, available from Simulation Modeling and
Analysis Company of Tucson, Arizona, is an interactive
package providing aids for hypothesizing a
distribution form (including histograms, probability
plots, and point statistics), carries out a £it
according to several alternative user-selectable
criteria (including known parameters and maximum
likelihood estimators), and performs several goodness
of fit tests, including chi-squared, K-5, and
Anderson-Darling, providing p-values as well as test
statistics, Five discrete distributions are available
(binomial, geometric, negative binomial, Poisson, and
discrete uniform), as well as thirteen continuous
distributions (exponential, gamma, inverse Gaussian,
lognormal, Weibull, Pearson type 5 and 6, extreme
value type A and B, logistic, normal, uniform, and
beta). Any number of candidate distributions may be
fitted to a given data set, for comparison of goodness
of fit. Other capabilities, such as file management
and the Kruskal-Wallis test for homogeneity of
different data sets, are also present.

In the appendix of Solomon (1983) are listings of
FORTRAN programs composing a package called SIMSTAT
which provide support for distribution fitting,
including summary statistics and goodness of fit
testing for exponential, normal, uniform, and Poisson
distributions. One of the routines of the package
also deals with individual customer records from
observation of a queueing system, for analysis of
interarrival and service time patterns.

CONCLUSIONS

The problem of specification of distributions and
processes from which samples will be generated during
a simulation is an important part of simulation
modeling, and can affect the output and conclusions
from a simulation study in important ways. Although
this quantitative modeling may not be as visible or as
easily understood as the more physical structural
modeling, it may be as important in determining model
validity (i.e., the degree to which the model as a
whole resembles the system being simulated) and thus
the ultimate usefulness of the simulation project.
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