Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

83

DISCRETE EVENT SIMULATION LANGUAGES

CURRENT STATUS AND FUTURE DIRECTIONS

James 0.

Henriksen

Wolverine Software Corporation
7630 Little River Turnpike - Suite 208
Annandale, VA 22003-2653

ABSTRACT

Simulation software is changing. Within the past
several years, significant developments in simulation
software have taken place:

1. New simulation languages have been developed.

2. New software packages have been developed for
use in conjunction with simulation (for
purposes other than building models, _pgs_e.)

3. New features have been added to existing
languages.

4. Vendors new to the simulation community have
marketed implementations of existing software
packages.

5. Simulation environments, comprising integrated
collections of simulation software t%tools have
been built.

As a consequence of these developments, those readers
whose perceptions of simulation software are several
years old should consider themselves out of date.
Those readers whose perceptions are five or more years
0ld should consider themselves extremely out of date.
Furthermore, enormous amounts of time and energy are
presently being expended on research and development
of simulation software. Thus, we can expect dramatic
changes to take place in the near future. Simulation
software of the 1990's will be as far removed from
present software as present software is removed from
building models "from scratch" in languages such as
Fortran.

This paper, a tutorial, summarizes the present state
of simulation software, identifies pressures for
changes, and describes an emerging consensus on the
major characteristics of simulation software of the
future.

DISCLAIMER

This paper is not intended to be an exhaustive survey.
Due to a focus on directly software-related issues and
due to space limitations, many important contributions
to the current state of the art of simulation, and
some opinions about directions of future growth have
necessarily been omitted.

THE NATURE OF THE PROBLEM

Size and Complexity

The development of simulation software tools is an
enormous problen. The disparate nature of the
component disciplines comprising simulation guarantees
that the progress of the science (art?) of simulation
will be less orderly than we would prefer. Bconomic
considerations amplify the tendency toward disorderly
progress. Assume, for example, that a salesman, an

engineer, and a computer scientist must compete for
resources within a company. The salesman can argue
that money spent in support of his activities
(acquisition of famcy color graphics hardware and
gsoftware, for example) correlates directly with sales
potential. The engineer argues that money spent in
support of his activities allow him to design and
build better products. The computer scientist argues
that money spent in support of his activities allows
him to build theoretical and pragmatic (if absolutely
necessary) foundations under everyone else. Guess who
gets the money.

Simulations are examples of what have been aptly
termed "domain-dependent” [1] problems. In the
process of building and experimenting with a
simulation model, our concepts about the system we are
modeling almost always undergo significant change.
Simulation software must recognize the implied need
for feedback mechanisms among the experimentation,
implementation, and design areas of a simulation
project. Such feedback must not only be allowed; it
must be encouraged [2]. Unfortunately, software
development methodologies typically do not encourage
such feedback; if fact some discourage it. (See the
section entitled The Evils of Structured Programming,
below.)

Nuts and Bolts

To put simulation software into perspective, it is
useful %o first consider a smaller problem, the
development of tools for "ordinary programming."” The
present state of the art of programming tools leaves a
great deal to be desired. Gutz, et al. [3] lament
“the primitive state of the programmer's art" and
criticize current "primitive software tools" for "lack
of compatibility, ill-defined capabilities, lack of
uniformity, lack of tailorability, lack of support of
software evolution, and lack of evaluative data." To
rectify this situation, enormous amounts of time and
energy are being expended on research into software
development tools and methodologies. (See reference
[4] for an excellent bibliography.) Languages such as
Modula 2 and ADA represent early milestones on the
path to improved programming productivity.

To many, programming is the most obvious activity in
performing a simulation; however, in the overall
scheme of things, programming must be regarded as only
a component of a larger discipline. Designing and
building models is a much more difficult undertaking
than designing and building programs. Preparation of
model input, specification of model design, and
analysis of model output require skills beyond those
required for "mere" programming. Programming is
emphasized in this paper, because our primary concern
herein is with simulation languages. The emphasis on
programming is also Jjustifiable on a philosophical
plane. Scientific progress almost always proceeds
from the concrete to the abstract. Theories are

-

84 Jim Henriksen

devised to explain observed phenomena, and experiments
are devised to test theories. Generality of
understanding is the result of scientic progress, not
the starting point. By its very nature, simulation is
an experimental science. Thus, we have every reason
to expect that advances in programming will play a
primary role in advancing the science of simulation as
a whole. .

Simulation software tools exist for other activities
in addition to programming. TFor example, software is
used for fitting raw data to statistical
distributions, portraying model operation (e.g.,
animation), displaying model outputs, and analyzing
model outputs. All of these tools operate at a "nuts
and bolts" level. The lessons learned in the
construction and application of these tools will help
to build stronger underlying methodologies.

Our emphasis on "nuts and bolts" issues should not be
construed as discounting the importance of “pure
research into the more theoretical aspects of
simulation. We agree with Tuncer Oren's description
(in the foreword to Zeigler's Multifacetted Modelling
[5]: "Model-based simulation is like a gem: it is
multifacetted. Some of the specialists too close to
one of the facets, perceive only that single facet and
the reflection of the success of their careers through
it.” "Nuts and bolts" goftware issues are an
important facet of simulation. Unfortunately,
however, their importance relative to other issues
tends to be overestimated by simulation practitioners
and underestimated by theoreticians.

Simulation Environments

An integrated simulation environment [6] is a
collection of software tools for designing, writing,
and validating models; writing and verifying
simulation programs (implementing models); preparing
model input data; analyzing model output data; and
designing and carrying out experiments with models.
The environment includes mechanisms for feedback from
the experimentation stage to the implementation stage
to the design stage. To be worthy of the adjective

integrated, simulation systems must allow the modeller

to shift his attention among various problem areas
with minimal difficulty. For example, in an
integrated simulation environment, a user might choose
to momentarily suspend the execution of a model, to
browse through model design specifications and/or
source code, before resuming execution. With most
present software systems, shifting one's attention
among problem areas is cumbersome. Many simulation
languages do not provide for interactive control of
model execution; thus suspension of execution is
impossible. 0f those which do, very few allow the
user to edit the source code or examine design
specifications. Typically, the model design tools (if
any) and source code editor can only be invoked by
operating system-level commands; i.e., model
execution, editing, and design are mutually exclusive
activities.

Improvements on Multiple Levels

Improvements in simulation software will take place on
three levels. At the lowest level, progress will be
made in refining underlying theories and
methodologies. At the middle level, progress will be
made in specific problem areas, such as model design,
programming, preparation of input, and presentation
and analysis of output. In some cases, old tools will
be improved, but in others, new tools will have to be
developed. At the highest level, progress will be

made in integrating simulation software tools into
simulation environments.

Summary

To summarize the situation, simulation is in a state
where:

1. The domain-dependent character of simulation
applications imposes requirements which
transcend those of "ordinary" programming
systems;

2. Major component disciplines, e.g., programming,
are in need of improvements;

3. To reach maturity as a science, simulation must
make progress on multiple levels;

4. TFor philosophical and economic reasons,
progress can be guaranteed to be undesirably
disorderly.

Is this cause for pessimism? No, no, no! Great
progress has been and is being made. Many
contributions to the progress will come from within
the simulation community, but many other ideas will be
borrowed from other disciplines, such as artificial
intelligence. Optimism is in order.

DEVELOPMENTS WITHIN THE SIMULATION COMMUNITY

The Impact of Advances in Hardware

Hardware capabilities are increasing and costs are
decreasing on a daily basis. The comparative
importance of labor costs versus equipment costs is
being restored to a proper balance, where people are
regarded as a more precious resource than machines.
Software vendors have responded to this situation by
implementing software systems for use on low-cost,
desktop hardware. Time-tested, major languages such
as GPss [7,8], suaM [9], and Simscript II.5 [10] have
all been implemented for_ desktop systems, as have
languages such as SIMAN [11].

The dominant role of mainframe computers in simulation
has been successfully challenged by smaller, easier to
use 8systems. What a desktop system may lack in
horsepower, it makes up through greatly improved ease

of use. The user of a desktop system needs no staff.

of operators to run his machine. The system is "up"
whenever he turns it on, and response times are
extremely predictable. ©Perhaps best of all, there's
no monthly bill from the accounting department. Many
simulation practitioners will continue to have need of
mainframe computing horsepower, but they too will
benefit from desktop technology, by using the .desktop
machine to develop and experiment with modeling
concepts, and using the mainframe to make production
runs. To operate in this manner, one must have the
ability to upload and download programs and data, and
mainframe and desktop software systems must be
completely compatible.

New Software Tools

New software tools are available in a variety of
simulation-related areas. Examples include:

1. Preprocessor software [12], which allows a user
to build simulation models out of building
blocks which operate at a higher level than
traditional simulation languages.

2. On-line and post-processing graphics software
[13], which facilitates the portrayal of model
operation and display of model results.

Discrete Event Similation Languages: Current Status and Future Directions 85

3. Statistical tools [14,15], facilitating the
fitting of distributions to data and the
analysis of simulation outputs.

4. Database tools [16], providing an underlying,
common repository for simulation inputs and
outputs.

5. Model design languages [17], providing
partially automated assistance in the design
and documentation of models.

Integrated Simulation Environments

The TESS system is the first integrated simulation
environment to be offered commercially. I%
"represents a new generation of software that
integrates model building, simulation execution, and
the analysis and presentation of results [18]." The
system "has evolved over a ten-year period to provide
support for problem solving using simulation.” For
the most part, TESS is a non-procedural language;
i.e., users express what is to be done, and TESS
itself determines how such requests are %o be carried
out. TESS provides a collection of independent
subsystems; e.g., the design of a model, the
specification of run controls, and the preparation and
specification of input data for particular experiments
can all be performed independently. However, the
subsystems are integrated into an overall conceptual
framework. For example, the combination of a model
and its run controls and input data constitute what is
called a scenario. Scenarios are stored in a
datebase. When a simulation is run according to the
specifications of a scenario, results are recorded in
the database. Reports, graphic displays, and
animations can be generated, as required, by issuing
non-procedural requests to appropriate subsystems. If
necessary, multiple passes can be made over the same
data, to refine the quality of output presentation.

Pressure for Language Improvements

GPSS provides an interesting example of pressures for
fundamental, low-level changes to simulation
languages. These days, GPSS models frequently contain
5,000 or more statements, and they may take months to
build. (This is an interesting contrast to the
expectations of Geoffrey Gordon, the inventor of GPSS,
who anticipated that typical problems to which the
language would be applied would result in 200-300
statement models built over 1-2 weeks' +ime.) The
GPSS language has no provisions for separately
compiled modules (except for HELP and EXTERNAL
routines written in other languages). A
5,000-statement program is B-I-G. Given that models
of ever-increasing size and complexity are being
built, will the typical GPSS program of tomorrow
contain 25,000 statements? While a 5,000-statement
program may be cumbersome, a 25,000-statement program
is bound to be extremely unwieldy. To cope with such
problems, the GPSS of tomorrow will have to be
radically different from the GP3SS of today.
Forthcoming papers [19,20] will describe a system
designed in response to such pressures.

DEVELOPMENTS QUTSIDE THE SIMULATION COMMUNITY

In this section, we explore developments which are
taking place outside the simulation community, but
which will also contribute to simulation.
Improvements borrowed from other disciplines, as we
shall see, constitute something less than a free
lunch.

The Evils of Structured Programming

Over the past fifteen years, a body of techniques
collectively referred to as structured programming has
been developed. Structured programming means
different things to different people, but sufficient
commonality exists to allow one to speak meaningfully
of structured programming methodology. The virtues of
structured programming have been extolled ad nauseunm
(for a representative collection, see reference [21]).
For all its virtues, structured programming has two
major defects: it overemphasizes the concept of
iterative refinement (a process of synthesis), and it
underemphasizes the concept of feedback (a process of
analysis).

The heart of structured programming is the process of
iterative refinement, in which. one starts with an
abstract characterization of system requirements and
proceeds through a series of steps in which
implementation details are added, rendering abstract
specifications more concrete. Great emphasis is
placed on assuring the correctness of the individual
transformations from the abstract to the concrete.
Unless great care is exercised, this process may imply
a methodological rigidity which is particularly
inappropriate to simulation. In a classic, if
somewhat pessimistic commentary, Sheil [22] states:

Virtually all modern programming methodology is
predicated on the assumption that a programming
project is fundamentally a problem of
implementation. The design is supposed %o be
decided upon first, based on specifications
provided by the client; the implementation follows.
The dichotomy is so important that it is a standard
practice to recognize that a client may have only a
partial understanding of his needs, so that
extensive consultations may be required to ensure a
complete specification with which the client will
be happy. This dialog guarantees a fixed
specification that will form a stable base for an
implementation.

The vast bulk of existing programming practice and
technology, such as structured design methodology,
is designed to ensure that the implementation
does, in fact, follow the specification in
controlled fashion, rather than wander off in some
unpredictable direction. And for good reason.
Modern programming methodology is a significant
achievement that has played a major role in
preventing the kind of implementation disasters
that often befell large programming projects in the
1960s.

The implementation disasters of the 1960s, however,
are slowly being succeeded by the design disasters
of the 1980s...

Sheil argues quite persuasively that as the size and
complexity of programming projects increases, the
process of iterative refinement is less and less
likely to be successful. To escape the straitjacket
of iterative refinement, we must recognize that
downstream discovery of less than perfect, or even
erroneous, assumptions is something to be expected in
complex systems. We need software systems which not
only allow for, but encourage feedback from "later"
stages to "earlier" stages.

An overcommitment to iterative refinement may result
in an undercommitment to analytical skills. The
author once attended a professicnal development
seminar given by Edsger Dijkstra, regarded by many as

86 Jim Henriksen

the father of structured programming. By sheer
happenstance, I ended up sitting next to Dijkstra at
lunch. I asked him what he would do when his
techniques for building correct programs failed; i.e.,
what would he do if he made a mistake and had a
difficult bug in a program. His flippant response was
"I'd consult an expert." He never answered the
guestion. Dijkstra is not alone in downplaying the
importance of analytical skills. Niklaus Wirth, the
inventor of Pascal and Modula 2, states [23] that
"Instead of relying too much on antiquated 'debugging
tools' or futuristic automatic program verifiers, we

should give more emphasis to systematic construction

[emphasis added] of programs and languages that
facilitate transparent formulation and automatic
consistency checks." Those who blindly overemphasize
the synthetic nature of programming at the expense of
analytical skills will sooner or later have to rely on
someone who doesn't: the intractable bug may bhe just
around the corner.

Improvements to Structured Programming Methodology

Recently, increased attention has been given to the
relationship between software and the environment in
which it operates. Giddings [1] defines the notion of
domain-dependent software, in which "The development
process 1is embedded within a search for knowledge
about the domain of discourse." A simulation program
is a classic example of domain-dependent software. It
is encouraging to see an article such as Giddings'
published outside the simulation community, because it
indicates a very favorable direction for future
research efforts. It is interesting to compare
Giddings' guidelines for domain-dependent software
with Nance's Conical Methodology fZ], which was
developed specifically for handling simulation
problens.

Improved Mechanismg for Abstraction

Abstraction mechanisms provide a means whereby a
program can use (read/write) attributes of objects
without knowledge of how the attributes are
implemented, and cah implement objects without
knowledge of how they are to be used. The oldest and
still perhaps best known abstraction mechanism is the
class concept of Simula [24]. The most common form of
abstraction is the concept of an abstract data type.
With an abstract data type, information about the
implementation of data is hidden from the user of the
data; information is made available only through very
carefully conirolled interfaces. For example, an
operating system might have a "next task to be
executed" attribute which was referenced from a number
of locations. To implement this attribute as an
abstract data type, one would provide procedures to
determine and to alter the next task to be executed.
If the operating system were implemented in this
manner, alternative algorithms for handling task
dispatching (FIFO, priority gqueues, etc.) could
easily be substituted for one another.

Other forms of abstractions include procedural
abstractions, in which procedures convert collections
of inputs into collections of outputs (e.g., pipes in
Unix [25]), and control abstractions, which define
methods for sequencing arbitrary actions (e.g., the
FOR EACH |member of a set| construct of Simscript
II.5). Languages which have built upon Simula's clags
concept include CLU [26], Alphard [27], Modula 2 [28],
and ADA [29]. The applicability of abstraction
mechanisms to simulation is obvious, for abstraction
is the most essential property of a model. Simulation
languages of the future will benefit from the lessons

learned in the development and use of these
mechanisms.

Extensible Languages

An extensible language provides mechanisms for adding
new operators and data types io the language. One of
the earliest extensible languages was MAD 30]. MAD
provided a simple, but powerful operator definition
facility. Statements defining operators were
translated into the same tabular form used by the
compiler to represent built-in operators. The lowest
level code generation routines did not distinguish
between user-defined operators and predefined
operators. Using the operator definition facility,
users could add new data types to the language, add
new operators, map new operators into previously
defined operators, and add support of new operand
modes to previously defined operators. The operator
definition facility was used to define a number of
sizable "packages." TFor example, packages were
developed for matrix arithmetic, complex arithmetic,
double precision arithmetic, and string manipulation.

A limited subset of the MAD operator definition
concepts have resurfaced in ADA. ADA operator
overloading allows the user to add support of mnew
operand mode combinations to existing operators. For
example, the ADA base language does not permis,
mixed-mode addition; i.e., a real number cannot be
added to an integer. However, the addition operator
can be overloaded by the user, to allow such
operations.

An interesting alternative approach to extensibility
is the use of source macros, as provided in the C
language [31‘]. In many cases, a good source macro
capability can approximate the power of an operator
definition facility, although macros are not nearly as
elegant. As an example, assume we are building a
model of a computer system, using a time unit of
seconds, and we would like to add the capability to
easily specify times in milliseconds. In a language
like €, we might be tempted to use a simple
text-substitution macro, such as

#define MILLISECONDS ¥ 0.001
Thus, a statement of the form

wait 10 MILLISECONDS;
would be expanded into

wait 10 * 0.001;

by the compiler. Unfortunately, a statement of the

form
wait i + j MILLISECONDS;
would be expanded inte
wait i + j * 0.001;
Thus, we would fail to achieve the desired effect of
scaling the entire expresion, "i+3j". To get around
this problem, we could define the following C macro:
#define MILLISECONDS(time) (time) * 0.001
A statement of the form

wait MILLISECONDS(i+j);

Discrete Event Simulation Languages: Current Status and Future Directions 87

would be expanded into
wait (i+j) * 0.001;

While this would achieve the desired effect, the
notation employed is downright wugly. An operator
definition capability would allow use of the natural
notation first shown above, and it would enforce the
expected operator precedence. A definition for
MILLISECONDS might look as follows:

define right unary operator MILLISECONDS(xpr)
xpr ¥ 0.001

Formalizing Modularity

It is generally useful to structure a large program as
a collection of modules. Most programming languages
do not dinclude rigorous definitions of what
constitutes a module. Some languages, such as GPSS,
do not even provide for independent compilation of
modules. While useful standards can be developed for
modularity in languages lacking formal definitions of
modules, languages which do include formally defined
modules offer a distinet advantage. Languages such as
Simula, CLU, Alphard, Modula 2, and ADA provide such
mechanisms in varying degrees. Simula is the only one
of these languages specifically designed for use in
simulation. Due to the increasing size and complexity
of simulation applications, simulation Ilanguages of
the future will have to a better job of supporting
formally defined modules.

The UNIX operating system provides a utility called
"make,” which is used for manipulating collections of
modules. Make operates on a user-supplied "makefile"
which describes +the relationships among files
comprising a large program. (Files can be thought of
as an informal approximation to modules.)
Relationships describe actions to be taken when a file
has been changed. A typical rule might specify that
when file X has been changed, files A, B, and C should
be recompiled. When using the make utilty, one simply
types "make" after making arbitrary changes to an
arbitrary number of files. The make utility detects
instances of file changes and takes all necessary
actions to build a consistent new version of the
entire program.

The make utility is (most unfortunately) completely
dependent on the accuracy of the makefile, which is
manually constructed by the user. In an ideal world,
the make utility would interface with language
compilers and editors. Language compilers could
automatically deduce dependencies not only at the file
level, but at a much lower level of detail.
Similarly, editors could communicate %o the make
utility the details of changes made to a file. TFor
example, if a subroutine definition were altered by
changing the mode of one of its arguments, then files
containing invocations of the subroutine would have to
be edited and recompiled to achieve a consistent
system. Integrated software environments of the
future will provide such support.

Artificial Intelligence

The tools being developed for dealing with artificial
intelligence will benefit simulation in several major
ways. First, AI researchers are working on the
all-important problem of knowledge representation.
The concept of a knowledge base will be essential to
simulation software of the future. We don't want to
reinvent the wheel forever; what we'd like to be able
to do is to sit down at a terminal and say "I want to

do a new simulation which is like the one I did
yesterday, except..." Someday, dialog of this sort
will be possible between man and machine. Second, AI
researchers are accustomed to dealing with ill-formed,
incompletely specified problems. Lisp [32], the most
popular language in the AI community, vreflects the
character of such problems: Lisp programs are very
dynamic: identifiers and their meanings can be
determined at run time, programs can generate and
execute other programs, etc. While +this degree of
flexibility may not be necessary for typical
simulation applications, it provides an interesting
reference point in the spectrum of programming
languages.

THE FUTURE

These are exciting times to be dinvolved with
simulation software. New, low-cost hardware has put
the computational power of yesterday's mainframe onto
today's desktop. 0ld software is being enhanced and
retargeted for use on such machines, and new software
tools are being developed. Contributions are bheing
made by members of the simulation community, and in
the future, judicious borrowing of ideas developed
within other disciplines will have a great impact.
Only a few years ago, people were writing about
simulation environments [6% Now the first of the
environments is a commercially available tool. All of
these developments are indications of great things yet
to come.

Since there are many groups working on simulation
software, it is impossible to predict the exact nature
of simulation software of the future; however, there
is an emerging consensus among developers as to the
general direction in which their research is headed.
Among the generally agreed upon attributes are the
following:

1. Simulation software will be implemented for use
on powerful desktop single-user machines.

2. It will be possible to easily transfer programs
and data among machines: networks will become
commonplace.

3. Software tools will be consolidated into
integrated environments.

4. lLanguages will provide better mechanisms for
abstraction.

5. Languages will support extensibility.

6. Languages will be improved %o incorporate
formal definitions of modules, and software tools
will be developed to support manipulation of
modules. Ultimately, such tools will interface
with model design tools, to provide assistance in
verifying that a simulation program is faithful to
its formal design.

BIBLIOGRAPHY

1. Giddings, R. V., "Accommodating Uncertainty in
Software Design,”" Communications of the ACM, Volume
27, Number 5, pp. 428-434, May, 1984.

2. Nance, R. E., Technical Report CS81003-R: "Model
Representation in Discrete Event Simulation: The
Conical Methodology," Computer Science Department,
Virginia Polytechnic Institute and State University,
Blacksburg, 1981, 71 pp.

88 Jim Henriksen

3. Gutz, 5., Wasserman, A. I., and Spier, M. J.,
"Personal Development Systems for the Professional
Programmer,” IEEE Computer Magazine, pp. 45-53, April,
1981.

4. WVasserman, A. I., and Gutz, S., "The Future of
Programming,” Communications of the ACM, Volume 25,
Number 3, pp. 196-206, March, 1982.

5. Zeigler, B. P., Multifacetted Modelling and
Discrete Event Simulation, Academic Press Inc.,
Orlando, 1984, 372 pp.

6. Henriksen, J. 0., "The Integrated Simulation
Environment," Operations Research, Volume 31, Number
6, pp. 1053-1073, November-December, 1983.

7. G@PSS/PC User Manual, Minuteman Software, Stow, MA,
1984.

8. Henriksen, J. 0., and Crain, R. C., GPSS/H User's
Manual, Second Edition, Wolverine Software
Corporation, Annandale, VA, 1983.

9. Pritsker, A. A. B. , Introduction to Simulation
and SLAM II, Second Edition, Systems Publishing
Corporation, West Lafayette, 1984.

10. Russell, E. C.,'Building Simulation Models with
SIMSCRIPT II.5, C.A.C.I., Los Angeles, 1983.

11. SIMAN product literature available from: Systems
Modeling Corporation, P.0. Box 10074, State College,
PA 16805.

12. AutoMod product literature available from:
AutoSimulations, Inc., P.0. Box 633, Bountiful, UT
84010.

13. AutoGram product literature available from:
AutoSimulations, Ine., P.0O. Box 633, Bountiful, UT
84010.

14: Unifit product literature available from:
Simulation Modeling & Analysis Co., P.0. Box 40996,
Tucson, AZ 85717.

15. AID product literature available from: Pritsker &
Associates, Inc., P.0. Box 2413, West Lafayette, IN
47906.

16. Standridge, C. R., "An Introduction to the
Simulation Data Language,"” Proceedings of the 1981
Winter Simulation Conference, 1981, pp. 635-637.

17. Kleine, H., Software Design and Documentation
Language, JPL Publication 77-24, Revision 1, NASA Jet
Propulsion Laboratory, Pasadena, 1977.

18. BStandridge, C. R. et al., Performing Simulation
Projects with TESS, Pritsker & Associates, Inc., West
Lafayette, 1984.

19. Henriksen, J. 0. "Introducing GPSS/85", To be
presented at Bighteenth Annual Simulation Symposium,
Tampa, ¥L, March, 1985.

20. Henriksen, J. 0. "An Extensible Host Language for
Simulation Environments", To be presented at 11th
IMAGS World Congress, Oslo, Norway, August, 1985.

21. Yourdon, E. N. , ed., Classics in Software
Engineering, Yourdon Press, New York, 1979.

22. Sheil, B. A. , "Power Tools for Programmers,"”
Interactive Programming Environments, McGraw-Hill, New
York, 1984.

23. Wirth, N., "An Assessment of the Programming
Language Pascal,” IEEE Transactions on Software
Engineering, pp. 192-198, June, 1975.

24. Franta, W. R. , The Process View of Simulation,
North-Holland, New York, 1977, 241 PP.

25. Ritchie, D. M. and Thompson, X., "The UNIX
Time-Sharing System", Communications of the ACM,
Volume 17, Number 7, pp. 365-375, July, 1974,
reprinted in Communications of the ACM, Volume 26,
Number 1, pp. 84-89, January, 1983.

26. ILiskov, B., et al., "Abstraction Mechanisms in
CLU," Communications of the ACM, pp.564~576, August,
1977.

27. Shaw, M. and Wulf, W. A., "Abstraction and
Verification in Alphard: Defining and Specifying
Iteration and Generators," Communications of the ACM,
pr. 553-564, August, 1977

28. Wirth, N., Programming in Modula-2, Second
Edition, Springer-Verlag, Berlin, 1982.

29. Olsen, E. W. and Whitehill, S. B., Ada for
Programmers, Reston Publishing Company, Inc., Reston,
1983.

30. [The Michigan Algorithm Decoder (The MAD Manuwal),
Revised Edition, 1966 (Out of print). |

3t. Kernighan, B. W. and Ritchie, D. M., The C
Programming Language, Prentice~Hall, Inc., Englewood

Cliffs, 1978.

32. Charniak, E., Riesbeck, C., and MeDermott, D.,
Artificial Intelligence Programming, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1980.

