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ABSTRACT

This paper offers an introduction to the fundamental
concepts of system modeling with emphasis on the
application of digital simulation. The topics pre-
sented include system modeling, model classification,
a discussion of mathematical and simulation models,
their distinction and relative advantages, an overview
of systems analysis, an example simulation model, and
brief discussions of random numbers, random variable
generation and simulation 1languages. The material
presented is largely conceptual and requires no prior
background in modeling.

INTRODUCTION

Managers today find that effective execution of their
responsibilities is a perplexing task of ever increas-
ing complexity. In part, this is the result of a
changing and often unpredictable world, national and
Tocal economies, the pervasive ijmpact of federal and
state regulation, changing attitudes of the consuming
public and the relentless and accelerating growth of
modern technology. The contribution of each of these
elements of the business environment has led to larger
and more complicated organizational structures to
effectively carry on business activity. Consequently
the manager is forced to recognize and understand the
interactive behavior of an increasing number of com-
ponents within the organization and its environment,

at least to the extent that they affect and are—

affected by his/her decisions.

Fundamentally a manager is a decision maker. The
process of making a decision involves the identifica-
tion, evaluation and comparison of alternative courses
of action in 1light of a variety of conditions which
may prevail during the period for which the decision
will be in effect. Because of the number of factors
which must be considered and the complexity of their
interaction, the manager often turns to a system model
for quantitative analysis of the impact of each
alterpative decision under each set of conditions
anticipated.

SYSTEM MODELING

In a broad sense a model may be described as the
representation of some aspect of reality without the
presence of that reality. In this sense models have
been used by man throughout recorded history. A
photograph, painting or drawing is a two-dimensional
representation of the visual aspects of the reality
portrayed. A sound recording is anauditory repre-

sentation and a scale model is a three-dimensional
representation. However, managerial decisions often
require a level of abstraction which can only be
provided by a mathematical or simulation model.

Model Classification

Models may be classified in a variety of ways.
Considering the manner in which a model represents a
system, a model may be iconic, analog or symbolic.
The common property of iconic models 1is reproduction
of a physical characteristic of the entity modeled.
Hence, an iconic model 1looks 1ike the reality
modeled. The common feature of analog models is
replacement of a property of the physical system by a
substitute property in the model. The distinguishing
characteristic of symbolic models is the replacement
of properties of the physical system by symbols, and
include mathematical and simulation models.

A model may be classified by the purpose for which it
is developed. In this context a model may be
descriptive or normative. A descriptive model is one
which describes the behavior of properties of the
system modeled. The output of such a model is not
intended to recommend a course of action but rather
simply describes what happens. A model which is
intended to recommend a course of action is called a
normative model. More often than not a normative
model is the result of a manipulation of or operation
on a descriptive model.

Models may be further categorized acording to whether
or not they portray the behavior of the system
modeled over time. A model which describes the
behavior of a system through a given time interval is
called a dynamic model. A model which portrays the
behavior of a system at a single point in time is
called a static model. As an illustration consider a
system model which describes the mean cost of pro-
duction per unit manufactured. If the model portrays
the fluctuation in the mean throughout the period of
production then the model is dynamic., If the model
yields only the mean for the entire production period
then the model is static.

The fourth dimension of model classification deals
with whether or not the model explicitly recognizes
the presence of random variation in the system model-
ed, Very few real world systems, if any, are free of
the influence of the unpredictable or random behavior
of the elements of the system or its environment. A
deterministic model is one which does not recognize
the randomness of the behavior of the system. While
a system may be influenced by random behavior, the
impact of that behavior may be sufficiently slight
that the random component may be ignored for
practical purposes. In such cases a deterministic
model is entirely appropriate. A model which
explicitly captures the random components of system
behavior is called a probabilistic or stochastic
model.

The final dimension of model classification treats
the manner in which the model represents change with~
in the system modeled. If a model describes
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change in the status of the system as occurring only
at isolated points in time then the model 1is called
discrete. On the other hand, if the model treats
change as a continually occurring phenomenon then the
model is called continuous.

By their nature mathematical and simulation models are
symbolic. While both types of models may be either
descriptive or normative, more often than not simula-
tion models are descriptive. A reveiw of the litera-
ture on modeling would indicate that static mathemati-
cal models are more prevalent than their dynamic
counterpart. Conversely dynamic simulation models are
reported more frequently than are static models. A
wide variety of deterministic and stochastic mathema-
tical models are reported in the literature, the type
of model being dependent upon the nature of the system
modeled.  However, simulation models are more often
stochastic than deterministic. . Finally, change is
treated as a discrete phenomenon more often than a
continuous phenomenon in the case of both mathematical
and simulation modeling. While continuous mathemati-
cal and simulation models are certainly not uncommon,
continuous change systems are frequently approximated
by discrete models.

Mathematical and simulation models are wused to
describe the interactive behavior of the organization
and its business environment under prescribed condi-
tions of operation. The input to either type of model
usually defines the operating conditions assumed and
the decision alternatives considered. The output of
the model describes the resulting response of the
organization and 1its environment. Model output
usually includes measures of system or organization
performance such as profit, cost, level of service,
sales volume, product quality, etc. Whatever the
measure of performance, a common feature of most math-
ematical and simulation models is quantitative
measurement providing a basis for comparison of alter-
native decision strategies.

Simulation and/vs. Mathematical Models

Both mathematical and simulation models have as their
intended purpose estimation of the value(s) of one or
more measures of system performance. This is accom-
plished by relating each measure of performance to the
interactive behavior of the system studied and in turn
relating that behavior to governing operating condi-
tions and decision alternatives.

Mathematical Models. Mathematical models are charac-
terized by one or a series of equations relating the
measure(s) of system performance to the variables
which affect system performance and equations or in-
equalities which define constraints on the range of
values which those variables may assume. The vari-
ables of the system may be classified as decision
variables, variables under direct control
the system, and variables which cannot be directly
controlled. Uncontrollable variables may be further
classified as those which are not influenced by the
values assumed by other variables, independent vari-
ables, and dependent variables whose values are deter-
mined by the values of the decision variables, the
independent variables and other dependent variables.

The equations defining a mathematical model usually
attempt to describe system behavior in aggregate form.
To illustrate, suppose that units of product are manu-
factured at a uniform rate and pi is the probability
that ith unit will be defective. If each defective
unit costs Cy and M units are produced then the mean
cost of defective units per unit manufactured, Cu’ is

given by

M
C, =% .5 pj 1
uM_'ilp1 ()
If the probability distribution of pj is known for
the manufacturing period then equation (1) may be
simplified to

C, = Cowp (2)

where y, is the mean probability of a defective item
occurring during the period of production. Thus to
estimate the mean cost of defective items the analyst
need not calculate the probability that each item
will be defective, but rather through equation (2),
he/she may deal directly with the mean probability -of
a defective item occurring, simplifying the computa-
tional effort. In other words, equation (2) deals
with the aggregate behavior of manufactured units
rather than the behavior of each item.

Mathematical models have long been a basic tool of
the physical sciences and engineering. During World
War II such models were applied to the analysis of
organizational systems, leading to the emergence of
the discipline of operations research. This
discipline is also referred to as management science,
systems analysis and systems engineering, although
the latter two terms are also applied to other
disciplines as well. More recently, mathematical
models have been successfully applied in the social
sciences.

Simulation Models. There are similarities between

from within

mathematical and simulation models. Both have the
same purpose and both utilize mathematical relation-
ships.  However, rather than attempt to deal with
aggregate system behavior directly, a simulation
model focuses on the behavior of individual com-
ponents of the system and attempts to capture each
change in the status of the system as it occurs over
time. Returning to the example where the model is to
estimate the mean cost of defective units per unit
produced, a simulation model would approach this
problem by defining a different value for p; for each
of the M units produced, determining whether each is
good or bad, summing the costs of those identified as
defective and dividing the result by M. However, the
value assigned to each p{_ must be drawn at random
from the governing probability distribution of pj at
the time the ith unit is produced. In this sense the
analyst must synthetically sample from the
probability distribution of pi and the sampling tech-
nique applied is called the Monte Carlo method.

As the foregoing discussion suggests, a simulation
model may be viewed as a vehicle for observing the
time dependent random behavior of a system where time
is artificially accelerated. The system observed is
composed of entities such as human beings, materials
and equipment which are intended to achieve specified
objectives through coordination of the entities of
the system and the activities which result from that
coordination. The activities which take place within
the system are initiated and terminated by events.
Events may be caused by human intervention within the
system, by human intervention external to the system,
by natural phenomena which are beyond human control,
and by natural phenomena which may be influenced but
not controlled by the human. Frequently the events
which Tead to a change in system status occur at
random points in time. The Monte Carlo method is
used to define random event times as well as other
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random phenomena which influence system behavior.

The fundamental operation of a time dependent system
simulation model is shown graphically in Figure 1. As
Figure 1 illustrates each event Teads to a reaction by
the system. The system reaction may include a variety
of activities some of which take place immediately and
some of which are delayed. In turn the activities
resulting from an event occurrence lead to changes in
system status. The model then moves forward in time
to the next event and the process repeats wuntil the
simulation experiment is completed.

Some authors trace the origin of simulation to the
early sampling experiments of W.S, Gosset, who pub-
lished under the name Student (24). However, the
foundations of modern simulation methodology are
usually traced to the works of von Neumann (26) and
Ulam (25). Their work, conducted in the late 1940's,
involved the analysis of nuclear-shielding problems

through a technique which they termed "Monte Carlo
Analysis." However, 1t was not until the early
1950's, with the arrival of high~speed computing

equipment, that the horizons for application of simu-
Tation were broadened to the point where it became
available and practical for the analysis of
engineering, business, and behavioral systems. Since
that time simulation has been applied in such diverse
areas as:

The Analysis of Air Traffic Control Systems

The Analysis of Large-Scale Military Operations
Communication Systems Analysis

Job-Shop Scheduling

Analysis of the U.S. Economy

Production Planning and Inventory Control

Determination of Manpower Requirements
Instructional Modeling for Higher Education
Energy Supply and Demand Analysis
Competitive Market Analysis

Housing Market Analysis

Transportation Planning

Financial Investment Analysis

Man-Machine Interface

Corporate Planning

Advantages and Disadvantages of Mathematical and
Simulation Modeling. Since simulation modeling and
mathematical modeling are the most frequently

employed modeling techniques applied to support the
managerial decision process, the advantages and dis-
advantages of each will be expressed in relation to

the other. Perhaps the primary advantage of simula-
tion over mathematical modeling is its relative
simplicity. First the system may be sufficiently

complex to defy a complete mathematical description
whiile being amenable to representation by a simula-
tion model. Second, the 1level of mathematical
sophistication and training required for the develop-
ment of complex mathematical models is generally
greater than that required for development of a
corresponding simulation model. Thus, while the
system may be amenable to mathematical analysis, the
level of sophistication required for the analysis may
be beyond that of the analyst while he/she may well
have the background and training required for
development of a simulation model. In summary then,
the relative advantages of simulation are versatility
and simplicity.

<
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While simulation is a relatively simple and versatile
technique for the analysis of complex systems, it is
not without its disadvantages. Today most simulation
models are executed on digital computers. As the com-
plexity of the system grows the execution time
required to obtain meaningful results <can increase
rapidly. Hence, systems analysis through simulation
can become expensive. On the other hand, a corres-
ponding mathematical model, given that it can be
deveioped, can generally be executéd on a digital
computer much more rapidiy and therefore at less
expense. In addition, when system optimization is
calied for it can often be achieved directly through
analytic technigues where such solutions are not
available in the case of simulation.

Since most simulation models attempt to capture at
teast some of the random variation present in the real
world system, the output of the simulation wmodel will
include random components. The random nature of the
output of the model frequently clouds the precision
with which the results can be interpreted, 1leading to
inconclusive analyses. On the other hand, the output
of a mathematical model is deterministic providing the
analyst with a more precise basis for the interpreta-
tion of results.

SYSTEMS ANALYSIS THROUGH SIMULATION

In many respects the steps necessary for the analysis
of a system through simulation are the same as those
taken when wusing any other modeling approach. These
steps can be summarized as follows:

. Identification of the problem
. Specification of the objectives of the analysis
. Definition of the scope of the system analyzed
. Definition of the operational characteristics of
the system and its interaction with its environ-
ment
5. Validation of the definition of the scope and
operation of the system
6. Formulation of a system model
7. Estimation of the parameters of the model
8. Development of required computer programs
9. Preliminary model validation (verification)
10. Model validation (comparison of model and system
results)
11. Model implementation and use
12. Periodic model revalidation

AN

A procedural summary of the steps usually taken in
analyzing a system are summarized in the flowchart in
Figure 2. While the sequence of steps indicated may
not be compietely exhaustive nor in the proper chrono-
Togical order in all cases, this outline may be used
as a rough guide for the analysis of most systems
problems. ’

While a complete treatment of systems analysis is be-
yond the scope of this discussion, a brief discussion
of the steps outlined above as they relate to simula-
tion analysis is in order. To resolve any problem one
must first understand the nature of the problem.
Problem situations are recognized by the symptoms
which they display. While in some cases treatment of
the symptoms may suitably arrest the problem, this
solution is often unsatisfactory. Thus the analyst is
likely to be more interested in identification of the
root cause of the problem and the discovery of means
to resolve the problem itself rather than simply
treating its symptoms,
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Once the problem has been identified the analyst must
outline a procedure which will hopefully lead to its
resolution. To properly analyze the probiem and
develop procedures for its resglution, the objectives
to be achieved as a result of the analysis must be
specifically identified. In addition criteria should
be defined whereby the degree to which those objec-
tives are achieved can be determined. For example,
the objective of the analysis of a production
facility might be to reduce downtime at a given
machine center. However, a solution which purports
to achieve this objective carries 1little credibility
unless the degree of achievement can be measured by
projecting the reduction 1in downtime which will
result from implementation of the recommendations
resuiting from the analysis.



Introduction to Simulation 69

The development of a model must be founded upon spe-
cific definition of the system modeled, a thorough
understanding of the interaction of the elements of
the system and the interaction of the system with its
environment. To this end the analyst should pursue a
thorough investigation of the system to identify its
purpose, operational characteristics, and obtain data
describing the behavior of the system under current
and past operating conditions. This exercise should
be followed by validation of his/her understanding of
system operation. This usually requires the partici-
pation of others more familiar with the system and its
operation than the analyst. At this point the analyst
is usually in a position to initiate model develop-
ment. The wmodel developed at this point must be
considered preliminary since it represents the
analyst's initial perception of system behavior.

Inherent in every simulation model are certain para-
meters whose values must be estimated from real world
data. For example, to simulate the behavior of an
inventory control system one must first know something
about the shape and values of the parameters of the
demand distribution. Following parameter estimation,
and in some cases concurrent with it, is the develop-
ment of a computer program for execution of the simu-
tation model.

Validation of the simulation model at this point is a
two staye process. The first step in this process is
to make sure that the simulation model is functioning
in the manner 1intended by the analyst and is often
referred to as model verification. This exercise
consists largely of a logic check of the computer pro-
gram developed for execution of the simulation model.
The second stage of validation presents a much more
difficult problem. Having ascertained that the model
is functioning in 1its intended manner, the analyst
must determine whether or not the intended functioning
of the model conforms to reality. Where the simula-
tion model is wused to represent the operation of an
on-going system, the results of the simulation model
can often be compared with those achieved by the real
world system. However, even when this comparison is
favorable there is no guarantee that the simulation
model will function in a manner representative of the
real world system under conditions which have not yet
been experienced. The problem inherent at this stage
of validation is compounded when the simulation model
is intended to describe the functioning of a system
which is not in existence at the present time but
which is contemplated at some time in the future. In
this case there 1is no system available which can be
used to check the results of the model. In the final
analysis then, complete validation of a simulation
model is usually not possible.

The final stage in the analysis of a system is model
implementation which Tleads to the specification and
execution of the simulation experiments to be carried
out and the analysis of the results of those experi-
ments. The design of simulation experiments consists
of specifying the conditions under which the simula-
tion will be executed and the number of simulation
runs, replicates, to be executed under each of the
conditions specified. The set of conditions under
which the simulation will be carried out will be
dictated, to a large extent, by the objectives of the
analysis. Ideally the analyst would hope to simulate
the operation of the system under investigation under
every condition which might be anticipated 1in the
future. However time and budget limitations may re-
quire a compromise in this regard.

To obtain a measure of the variability and assess the
precision of the results achieved under any set of
conditions, the analyst would normally choose to
replicate the simulation experiment under each set of
conditions. The essential question to be answered
here is how many replicates are necessary to achieve
acceptable precision. In general, the precision of
the estimate of a measure of system performance is
improved by increasing the number of replicates of
the simulation experiment. However, as the number of
replicates 1is increased the cost of executing the
experiment will increase proportionately.

The success of validation efforts is predicted on the
conformance of model behavior to system performance.
In the course of model development the most con-
vincing basis for wvalidation is data describing
recent system behavior. However, since close confor-
mance of model and system behavior on this basis
offers no guarantee of continuing conformance 1in the
future, validation should be viewed as an on-going
process throughout the 1ife of the model. With this
in mind, when the model 1is implemented it may be
useful to schedule validation exercises at specified
time intervals in the future; at the same time
specifying the system data required for the valida-
tion effort and the manner in which those data should
be collected. One consequence of anticipating the
need for continued revalidation is that the system
data collected usually provide the basis for a more
complete validation effort than was possible during
model development.

SIMULATION MODEL DEVELOPMENT

Perhaps the simplest way to present the basic con-
cepts of simulation modeling is by example. Consider
a sampling system for quality control by attributes.
Manufacturing lots containing L items are submitted
for inspection. The inspection procedure consists of
drawing a sample of size n, inspecting each item in
the sample, 1identifying each as either good or bad,
recording the total number of defects found, x, and
comparing the number of defects identified with a
criterion variable called the acceptance number, c.
If the number of defects found in the sample is less
than or equal to the acceptance number the 1lot is
accepted. Otherwise the 1ot is rejected. Assume
that the objective of the analysis is to determine
the proportion of Jots which one might expect to be
rejected as a result of implementation of the quality
control system.

First let us examine how one might determine the pro-
portion of lots rejected by experimenting with the
physical system. This could be accomplished by
implementing the inspection system defined above and
using it for the inspection of M manufacturing lots.
Associated with each lot selected is the number of
items contained in the 1lot and the proportion of
those items which are defective. For simplicity we
will assume that the lot size is constant from one
lot to another. However a similar assumption with
respect to the proportion of defective items
contained in each lot would be unrealistic. Assume
that an unknown proportion of defective items will be
contained 1in each manufacturing lot, and that the
proportion defective will vary from lot to lot. From
each lot a sample of size n is drawn and the sampling
procedure already defined is carried out. Repeating
this process for a total of M lots record the total
number of lots rejected and divide this number by the
total number of lots inspected, M, to obtain an esti-
mate of the proportion of lots rejected. A schematic
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representation of the experiment with the physical
system is shown in Figure 3.a.

Now consider the development of a simulation model to
conduct a similar analysis. It is a relatively simple
task to develop a computer program to execute the
steps indicated 1in Figure 3.a with the exception of
definition of the proportion defective for each lot
and the execution of inspection of -each item included
in the sample. Thus to completely define the simula-
tion model a method must be developed for assinging a
value to the proportion of defective items included in
the Tot such that the simulated variation 1in propor-
tion defective from one 1lot to another 1is represen-
tative of the variability which exists 1in the real
world system. In addition, complete specification of
the simulation model will require the development of a
technique whereby each item 1in the sample is
classified as good or bad in a manner descriptive of
actual conditions.,

The problem of simulating the inspection of individual
items in the sample will be treated first. It should
be obvious that the proportion of defective items in
the ot will influence the number of defective items
detected in the sample. Assume at this point that a
value has been assigned to the proportion of defective
items in the lot, P, If an item is drawn at random
from a Tot having a proportion of defective items P,
then the probability that the item is defective 1is P.
Hence the methodology developed for simulation of the
inspection process should have the property that the
probability that any item selected is defective is P
as it is in the case of the real world system. This

is accomplished by using what are known as random

numbers. A random number is a random variable ~which
is “uniformly distributed on the interval (0,1).
Hence, in drawing or generating a random number, each
number between 0 and 1 has an equal and independent
chance of occurring.

To examine how one would use a random number to deter-
mine whether or not an individual item of product is
defective, suppose that the proportion of defective
items 1in a Jot is 0.05, that is P = 0.05. If a
succession of items is drawn from the lot one would
expect to find that approximately 5% were defective,
Now consider drawing a sequence of random numbers.
Since these numbers have thé property that each value
between 0 and 1 has an equal and independent chance of
occurrence, one would expect approximately 5% of the
numbers drawn to lie on the interval (0.0, 0.05).
Thus to simulate the inspection of items, a sequence
of n random numbers is drawn and compared to the pro-
portion defective, P. If the random number, r, is
less than or equal to P, the item is classified as
defective. On the other hand, if r is greater than P
the item 1is considered good. To put the process in
probabilistic terms, a 0 will correspond to a bad item
and 1 to a good item. The probability of a ¢ occur-
ring (bad item) is then P and the probability of a 1
(good item) is 1-P.  The cumulative probability dis-
tribution for this random variable is shown in Figure
4. By choosing a random number, r, the analyst is
actually designating a value of the distribution func-
tion. Entering the y axis in Figure 4 at the point
designated by the random number, proceed horizontally
until  the distribution function is intersected.
Dropping vertically from the point of intersection
yields the value assigned to the random variable. As
indicated previously, if r is less than or equal to P,
a 0 is generated and if r 1is greater than P, a 1 is
generated. The procedure just described provides a
synthetic method of categorizing items as good or bad
which has the property that the probability that any

item is categorized as defective is the same as the
probability that the item would be found defective in
the physical inspection process.

The fundamental methodology used to generate all
random variables is similar to that described for the
inspection process discussed above. Let us apply
this approach to the generation of values of propor-
tion defective for those Tots for which the inspec-
tion process is to be simulated. Proportion defec-
tive is a random variable which can assume values
between 0 and 1. A typical cumulative distribution
function for proportion defective 1is shown graphi-
cally in Figure 5. To generate values of proportion
defective one selects a random number, r, and enters
the y axis of the distribution function at the point
defined by r. The value of proportion defective is
obtained by dropping vertically from the intersection
of the distribution function to the x-axis.

The reader will recall that the two central problems
which existed 1in developing a simulator for the
quality control system discussed here were to
identify synthetic means of generating proportion
defective in a manner such that the variability in
values of proportion defective generated would
correspond to those which exist in the real world
system and to devise a method of designating sampled
items as good or bad. Having developed these two
techniques the analyst is in a position to complete
the 1logic for preparation of the final simulation
model. A flowchart for the simulation model for this
quality control system is shown in Figure 3.b.

In discussing the development of the simulator for
the sampling inspection system described above, it
was assumed that the analyst had available a source
of random numbers and that he/she is able to con-
struct the cumulative probability distribution func-
tions required for generation of the random vari-
ables included in the system. Random numbers can be
obtained from standard tables or can be generated on
a digital computer. In order to construct the
cumulative distribution function of a random variable
data must be collected from the system under study
which indicates the variation which exists in the
random variable of interest. While the data collec-
tion effort required may be expensive and time
consuming, it is a necessary prerequisite to the
development of a valid simulation model or any system
model for that matter.

RANDOM NUMBERS

As the example cited above indicates, random number
generation is an important component of every
stochastic simulation model. An essential property
of every random number generator is the ability to
generate random variables which are uniformly distri-
buted on the interval (0,1). Actually digital
methods for generating random numbers are algorithmic
and therefore the numbers resulting are generally
termed pseudo-random numbers. That is, since the
numbers are generated algorithmically they are not
actually random. However, were one to compare a set
of numbers derived from a reliable digital generator
with numbers which were truly random, the distinction
between the two sets of numbers would not be ap-
parent. A discussion of algorithmic methods for the
generation of random numbers is beyond the scope of
this article. However, random number generators are
available for most digital computers.
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GENERATION OF RANDOM VARIABLES

At the heart of every simulation model is a mechanism
for generating values of those random variables which
influence the behavior of the system analyzed. The
method used to generate values of a random variable is
often referred to as a process generator. Funda-
mentally, a process generator defines a relationship
between each possible value of the random variable
considered and values of a wuniformly distributed
random number. The principle underlying the genera-
tion of random variables was discussed in the
preceeding section and is illustrated graphically in
Figures 4 and 5.

While the graphical approach to process generation is
acceptable in some cases, it is often useful to define
mathematical relationships which simplify the process.
The reader will recall that in the graphical approach
we selected the value of a uniformly distributed ran-
dom number which was in turn used to define a specific
value of cumulative distribution function of the
random variable to be generated. Let r be the value
of .the random number and let F(x) be the value of the
distribution function such that

F(x) =r (3)

where r and F(x) lie in the interval (0,1). The prob-
lTem at hand is to find the value of the random vari-
able x which satisfies (3). That is, x is related to
r through (3) and we must find an inverse relationship
of the form

x = h(r) (4)
To illustrate how this is accomplished, assume that x
is exponentially distributed with the probability
density function given by

f(x) = xe" M, 0 < X< o (5)

1.0

Cumulative
Probability

0.0 T T T
0.02 0.04 0.06
Proportion defective, P

Generation of the random variable
proportion defective

Figure 5

The distribution funetion of x, F(x), is given by
F(x) =1 - e~XX (6)

By generating a value of r the analyst 1is simply
specifying a particular value of F{x). That is

F(x)
1 -~ e"Xx (n

r

Solving for x in terms of r

1
x = -7 In(l-r) (8)

Thus we have a simple mathematical expression which
will define a unique value of the exponential random
variable, x, for each value of r generated.

The technique described here and that used in the
quality control example are applications of the
inverse transformation method. Although conceptually
simple, for some random variables its application may
prove tedious. Alternatives to the inverse transfor-
mation method include

Composition
Convolution
Acceptance/Rejection

SIMULATION LANGUAGES

The complexity of the systems wusually analyzed
through  simulation generally requires that the
analysis be carried out on a digital computer. 1In
such cases the analyst must translate the simulation
model into a medium which can be interpreted by the
computer. This translation is accomplished through a
programming language. Translation of the simulation
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model can be accomplished through a general purpose
language or a special purpose language. General pur-
pose languages such as FORTRAN, BASIC and PL/I provide
the programmer with a tool for the analysis of a
virtually limitless number of problems, of which simu-
Tation is only one. On the other hand, special pur-
pose simulation Tlanguages are designed to address
problems to be analyzed through simulation although
the variety of simulation problems which can be
handled by these languages is quite broad. Included
in the category of special purpose simulation lan-
guages are GPSS, SIMSCRIPT, SLAM, DYNAMO and SIMULA.

Perhaps the principle advantage of general purpose
languages lies in the fact that one of these languages
is probably already known to the programmer. In addi-
tion these languages provide the analyst with a maxi-
mum of flexibility in the design of his/her analysis.
However, because special purpose languages are
oriented toward the specific application of simula-
tion, the programming time required for translation of
the model is generally less than that required in the
case of general purpose languages since the time
keeping mechanism and many of the subroutines normally
required in any simulation model are built in. In
addition, the structure of special purpose languages
will often help the analyst to formulate the model.
However, 1in using a special purpose language the
analyst 1is restricted to a prescribed output format
and increased computer running time.

SUMMARY

Simulation has proved to be an effective and versatile
modeling technique for the analysis of complex inter-
active systems in both the private and public sectors.
In addition simulation offers the advantage of rela-
tive simplicity in model construction as compared with
mathematical modeling.
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