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The Ada Simulation Support Environment (
purpose to support the development and main
Ada throughout their life cycle. We deseri

‘v

ASSE) is a software system, with the
tenance of simulation models written in
be here the transaction flow or network

part of the ASSE, which allows to build models like in GPSS or SLAM. Our view of
such models is slightly different from that of the above mentioned languages,
which is demonstrated in detail by the server/resource process. The design stres

ses modular top-down development using submodels. MNModels can be developed and

tested interactively.

{. THEE ADA SIMULATION SUPPORT ENVIRONMENT

The main guide lines for the design of the ASSE
have been:

- package concept: instead of introducing a new
simulation language, which fulfills the requi-
rements of modern software technology as well as
the state of the art of simulation, we ‘gave prefe-
rence to a system of packages.

These packages are well tuned together and can be
used at two levels:

- on a low level, where a deeper insight of all
concepts is necessary and where support is pro-
vided for basic tasks like queue management, ran-
dom variates, entities-attributes~sets management
and simulation control (combined modeling: conti-
nous, discrete event, activity scanning and pro-
cess interaction including transaction flow or
network modeling).

- on a high level, where the usage is very user-

friendly and decidely simple, and where the stress
lays on °the fact, that simulation is a human
activity, affected by a wide range of different
techniques, where the "man in the middle® has to
be supported and has to be freed from all techni-
cal details not concerned directely with the ap-

plication domain.

The packages on the high level can be divided in
two classes:

the actual simulation subsystems like

model_design
model_verification
model_documentation

and the support systems like

data_base_management
statistical_analysis
graphiecs
screen_printer_ IO

For the 1latter packages it is not intended to
provide these packages themselves, but to provide
interfaces to standard systems, which - as we hope
- will soon be available in Ada (in package
form!). .

We have presented the overall design of the ASSE
and hereby the discrete event approach more in
detail in "ASSE - Ada Simulation Support Fnviron-
mept" (Adelsberger 1982). We have deslt with
transaction flow or network modeling in our paper
u} Structured and Modular Approach to Transaction
Flow Models" (Adelsberger 1982a). We catch up this
subject bhere again focusing our discussion to the’
following topies:

submodels

the server process

interactive design and testing of transaction
flow (network) models

We demonstrate our ideas by an example, which is
an extension of an example given by T. Schriber
(1974): "Inspection Station on a Production Line".
A G~GERT version of the example can be found in
Pritsker (1977), a SLAM version in Pritsker
(1979). A reader interested in technical details
of the implementation is refered to the paper
wTpansaction Flow Models in Ada: Technical
Eackground" (Adelsberger 1984) .
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2. TRANSACTION FLOW OR NETWORK MODELING

The languages GPSS and SLAM (the network part) are
presently dominating the area of transaction f£low
or network modeling. Both languages provide the
typical construects for this type of systems. The
notation offered by these languages carries dJi-
rectly the corresponding natural conceptual frame-
work. The rather high semantic level (in respect
to the application field) has the advantage to
speed up model development; a certain restriction
of flexibility has to be put up with.

We consider both languages to be rather poor as
programming languages (compared e.g. with Pascal
or Ada). The syntax of GPSS is designed like an
assembler. It has many deficiencies such as bad
control structure, low redundancy (using numbers
where names. would be desirable). The improvements
of the last years on GPSS (GPSS/H) have diminished
these shorteomings, but could'nt change the basic
conceptual weakness. SLAM suffers from the fact,
that it is based on FORTRAN, 30 all weak points
recognized in FORTRAN, are valid for SLAM.

But even in respect to their application areas we
find that these languages have their conceptual
deficiencies. As examples we mention the following
aspects:

(a) GPSS and SLAM do not suppart submodels. Expe-
rience in the field of general programming has
shown, that modularity and top-down design has
improved program development. As examples, comple-
xity 1is reduced and readability is improved. The
same can be expected, if submodels can be defined.
We are going to present a way to implement submo-
dels.

(b) We think, that both languages would profit
from a more precise approach. We think, +that in
such a framework it has to be clearly distin-
guished between what can. be represented in a net-
work in form of nodes (blocks) and what exists in
the model, but has no direct counterpart in form
of a node or block. Both languages tend to imple~
ment the latter in form of nodes (blocks), which
leads to unnatural representations of the given
real system. SLAM has withdrawn from the GPSS
principle to represent everything in netwerk nota-
tion. SLAM makés more use of control statements
outside thé network: so one can set the time to
start and to end the simulation in a natural form
via an WINITIALIZE" statement. A GP&S user has to
define for the same purpose a separate network,
producing a clock transaction to stop the simula-
tion run. Furthermore SLAM provides information
about the queues, which are used in the network,
via control statements 1ike PRIORITY. Finally,
SLAM separates the general infoeormation about re-
sources and gates from the actions, ftaken at node
arrivals. This general information is given 1in
form of "“blocks" (not to be confused with the GPSS
blocks!), to which references are made in nodes
like “AWAIT", "OPENM or "CLOSE".

In our approach we are werking out clearly the
difference between this overall information and
the action which has to be taken, when an entity
_arrives at' a node. We demonstrate this in detail
in our. description of the service process. As wé
will see, our conception of the service proeess
enables the user to implement simple situationé

easier than in SLAM or GPSS, but it enables also
to implement situations in a straigtforward form,
which can only be implemented in GPSS or SLAM in a
trieky or complicated form.

A further advantage of the Ada Simulation Support
System is the fact that a modeler can dispose over
the complete expressive power of Ada.

3. THE ASSE NETWORK PART
3.1 Models (Sutmodels)

L model (submodel) is described by means 6f ibs
static and dynamic structure. The static structure
is given by global variables, entity attributes
and: the different processes like servers, resour-
ces, queues etc. The dynamlc structure is given inm
form of a network.

3.2 The Processes (Statie Structure)

The processes are listed here; some of them are

described in more detail beneath:

QUEUE SERVER/RESOURCE MATCH
CREATION ‘GATE
TERMINATION ACCUMULATE

3.3 The Network (Dynamic Structure)

A network is decribed like a task. The network
specification contains the enter_ and outlet_de~
clarations (in analogy to the entry_declaration of
a task). They denote places where entities can
enter or leave a network. This comprises the gene~
ration (creation) and termination -of entities and
the transfer of entities from one network to
another one.

The required actions concerning these processes

are effected in the statement part of the network
body via entry calls or accept statements like:

REQUEST WAIT PREEMPT
SERVICE RELEASE CANCEL
OPEN CLOSE

There are predefined processes in the simula-
tion_standard_package, which have not to be de~
clared seperately and which can be used to *simu~
late the passing of time or the splitting of
entities:

HOLP SPLIT

There are no specific requirements. for ASSIGN
nodes or blocks. Most valid Ada statements may be
used 1in the network body. Standard numerical at-
tributes (SNA's) dre defined for processes and
entities (transactions) like in GPSS . These SNA's
can be used wherever variables can be used.

There are no specific control statements (like the

TRANSFER block in GPSS or the ACTIVITY branching
in SLAM), because the usual control constructs of
Ada may be used: LOOP, IF-THEN~ELSE, CASE,

3.4 Modularity

The ASSE network part supports ‘in excellent form
top~-down design and modularity: It is possible to
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define submodels and generic submodels to con-
struct a model out of different submodels.

Submodels are easy to understand: they act like
subprograms (procedures) in a program. Generic
submodels can be seen as templates of model units,
and can be parametrized. Instances (meaning co-
pies) of the generic submodels can be made, and
can then be used in a model.

A model is organized like a generic Ada package.
It has to be distinguished between the following:

- what can be seen and can be used from the
outside

- what is hidden and only known inside the
submodel

~ what must be provided from the outside

This corresponds in an Ada package to:

~ package specification.
- package body
- generic parameters

With models we speak about:

~ model specification
~ model body
- model parameters

Normally, . the model specification consists of the
enter declarations, but could contain server and
queue declarations. The model body consists of the
specific server and queue declarations for the
submodel and the network. This can be considered
as a black box from the outside. The model parame-
ters are normally the outlet points of the net-
work. An outer model has to take care of the
entities leaving a submodel at an outlet point.
This can be done via a termination process or by a
link (transfer) to another enter point visible in
the enclosing model, A submodel can be, compiled
separately, which speeds up the whole development
process.,

3.5 Global Variables

Global variables are attributes of the whole sys-
tem. They are declared as Ada objects in the
declarative part of the model.

3.6 Entities

Fntities are declared in three stages. First the
different entity kinds are introduced in enumera-
tion form. Then the attributes of the entity are
declared &as a record construct with the entity_-
name as the discriminant and a variant part. Fi-
nally 'entity' is introduced as an access type for
the attritutes., The actual entity is called cur-
rent_entity.

Example:

type entity_name is ( haircut_only_customer,
shave_and_haircut_customer);

type attributes (kind : entity_name ) is
record
info: hidden_info;
age: integer;
service_time_haircut: float;

case kind is
when shave_and_haircut_customer =>
service_time_shave: float;
when others =>
null;
end case;
end record;

.

type entity is access attributes;
current_entity: entity;

A component 'info' of the limited private type
'hidden_info', common to all variants, has to be
declared. This type is provided in the entity -
attributes - set manager and serves to control the
entities (create, insert etc.). (For a more de-
tailed discussion see Adelsberger 1982.)

A Dbasic idea is to provide each entity with its
own processor executing the node arrivals. The
task performing in this way is also a component of

the field 'info'.
3.7 Simulation Control

The outermost model body has to control the simu-
lation runs. This is done via procedure calls. The
model section starts with the word "SIMULATE". The
basic ideas are like in SLAM. The more important
procedures are:

procedure general_information
(project_name : string; project_date : time);

procedure seeds (stream number: integer;
initial_value: integer; .
reinitialization: boolean);

procedure initialize
(starting_time: float := 0.0;
ending_time : float;
initialize_variables,
initialize_queueing_system,
clear_statistical arrays: boolean := true);

type monitor_option is (summary, queues, clear);

procedure monitor
(option : monitor_optiocn;
first_execution,

time_between_execution : float);

procedure trace
(option : trace_option;
first_execution,
last_execution : float);

procedure start_simulation;

4, THE PROCESS DESCRIPTIONS
4.1 Queue

Queues are described in more detail in a recent
paper by the author (Adelsberger 1982). The para-
meter describing the queue are: the queue capaci-
ty, the initial number of entities in the queue
and the priority rule feor the queue. A full queue
can block server/resource processes. In this case
a list of their names has to be provided.
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Additional declarations:
type queue_priority is (FIFC, LIFO, HVEG, LIFO)
Initialization parameters:

queue_capacity:

natural := integer'lasti
initial_occupancy: natural := 0j
priority : queue_priority := FIFO;

block: array {(natural range <>) of
server_resource_name;

SNA's:
queue_size: natural;
queue_full: boolean;
entity_count: natural;
minimum content,
maximum_content: natural;

average residence_time: float;
4.2 COreation Process

Entities. can be created and inserted in a network.
A procedure canh bé supplied to initialize the
attributes of thé entity. The meximm number of
¢reations, the time for the first crieation and the
time between subsequent creations cah be stated.
The place, where the entity is to be inserted (the
ENTER node) has to be fixed.

Initialization parameters:

entity_kind : entity _name;
initialization : proceéduré_name;
time_of_ first_creation : float :=0.0;
time_bebween_creations : float;
maximum _number_of_creations :

integer :=integer'last;
enter_name : enter_node_name;

Usage:

accépt enter _name;
SNA's:

count : integer;
Exanplé:

Declaration:

procedure customer initialization is
begin »

customer.year_of_birth := current_year;
énd. customer;_initialization;

customer._generation : creéation
( entity_kind => customer,
procedure_name =>
customer_initialization,
time, of first_creation => 0.0,
time_between _creations =>
uniform (10,0,20,0,1),
max_number_of creations. => 100,
enter_name => entrance );

Application:

accept entrance;

4,3 Termination

Entities c¢a&n ©De removed from the networf. The
termination process counts the removed entities. A
number can be specified and as soon as that number
is reached, the simulation is stopped.
Initialization parameters:

stop_simulation: integer:= integer'last;

count.: integer;
Usage:
outlet(process_name);
Example: -
Declaration:

exit_door: termination;
emergeéncy.éxit: termination (10);

Application:

outlet(exit_door);
outlet (emergency_exit);

4.4 Server or Kesource Process

This prédéss has two forms of interpretation: It
can be regarded as a server process with one or.

more parallel or identical servérs or it can bBe

interpreted as a process to get accdess to a re~
source. THe requests of servers/resources are
queued, different queues can be involved. The list
of" queues where the requests are- scheduled has to
be provided. An optional select criterion states,
from which queue the next entity is chosen for the
service, if entities waitf in more than one quéue.
The default criterion is cyclic. Servers (resour=-
cés) can be preempted..

Additional declarations:

type server_status is (idle, busy);

type select_alternative is (
given_order, cyclie,,
random,, assenbly: mode_option,
largeést_average_number,
simallest_average. number,
longest_waiting time,
shortest_waiting time,
largest_quete, smallest_queus,
largest_remaining_capacity,
smallest_remaining capacity);

Initialization parameters:

capacity: natural:= integer'lasty

-= or number of parallel servers
preemptable: booleant= false;
queue_name_list:.

array (positive range <>) of* quéue_naiie;
Select, critérion: sSelec¢t_alternatiyve:s=cyelic;

SNA's:

The SNA's can be éalled in two. forms: indexed,.
denoting a speeific server (resource unit), or
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without index. In that case the attributes for the
whole process are given. The range of the index is
1 .. capacity.

status: server_status;

count,

preemption_count : natural;
preempted: boolean;

remaining processing_time,
consumed_processing_time: float;
current_capacity,

remaining capacity: integer;
utilization,
average_holding_time: float;

Usage:

Interpretation as a server: An entity requests
service from a server at a REQUEST node in the
network. A queue is determined to keep track of
the incoming requests. A priority value can be
submitted, which can be used in connection with
the PREEMPT node. If a server is idle, a connec-
tion between this entity and the server is esta-
blished. If all servers are busy, this request is
queued, but in contrary to GPSS and SLAM (!!!), it
doesn't prevent the entity from moving on. Only
reaching a WAIT_FOR_SERVER node prevents the move-
ment of the entity, if it could not get service in
the meantime. The server is released at a RELEASE
node.

Interpretation as resource process: The indicated
number of units are requested at the REQUEST node.
The entity waits when reaching a WAIT_FOR_RESOURCE
node and still not enough units of the resource
are available. The indicated number of units 1is
returned at the RELEASE node.

REQUEST (name: process;
at_queue: queue_name;
units_requested: integer :=1;
priority: float := 0.0);

WAIT_FOR_SERVER (name: process);
WAIT_FOR_RESOURCE (name: process);

RELEASE (name: process;
units_released: integer:= 1);

A WAIT node combines the function of a RELEASF and
a WAIT_FOR_SERVER (WAIT_FGR_RESOURCE) node. This
WAIT node corresponds in case of a server exactly
to the SLAM 'QUEUE' node and to the GPSS 'SEIZE!
block, if +the 'SEIZE' block is surrounded by a
'QUEUE' and 'DEPART' block.

WAIT (name: process;
at_queue: gueue_name;
units_requested: integer :=1;
priority: float := 0.0);

It is possible to provide the server with the
information about the length of the service at the
REQUEST node. Two cases are distinguished: The end
of the service is indicated via a service time or
via a condition, which has to be true to end the
service. The WAIT_END_SERVICE node is important in
this context, which prevents an entity from mo-
ving, 1if the requested service is not finished.
The RELEASE node is superfluous in this case and
its usage would be erroneous.

REQUEST (name: process;
at_queue: queue_name;
with function_name return event_time;
units_requested: integer :=1;
priority: float := 0.0);

REQUEST (name: process;
at_queue: queue_name;
with function_name return boolean;
units_requested: integer :=1;
priority: float := 0.0);

WAIT_END_SERVICE (name: process);

The combination of a REQUEST node of this second
kind with a WAIT_END_SERVICE node is the SERVICE
node. This single SERVICE node replaces the com-
plete GPSS sequence "“QUEUE - SEIZE ~ DEPART -
ADVANCE - RELEASE" or the SLAM construct "QUEUE +
Service ACTIVITY",

SERVICE (name: process;
at_queue: queue_name;
with function_name return event_time;
units_requested: integer :=1;
priority: float := 0.0);

SERVICE (name: process;
at_queue: queue_name;
with function_name return boolean;
units_requested: integer :=1;
priority: float := 0.0);

The capacity of the resource (the number of paral-
lel servers) can be changed at an ALTER node.

ALTER (name: process;
units);

A service (resource) request may be cancelled. If
the service has already started, the service is
interrupted immediately. The consumed service time
is. saved and can be used by the entity. For a
resoure process, the units are returned.

CANCEL (name: process);

It is possible to preempt a server from service,
if the priority of the incoming entity is higher
than that of one of the served entities. The
server with the entity having the lowest priority
is preempted. The action takes place at a PREEMPT
node. If preemption is impossible, the incoming
entity waits in the specified queue. If pre-
emption is possible in a model, the preemption
flag of the server has to be checked. If the
preemption flag is not checked and an entity tries
to move on, a programming error is raised. The
remaining service time of an entity is saved and
can be used by the preempted entity via the nume-
rical attribute 'remaining processing time'.

PREEMPT (name: process;
q: queue_name;
units_requested: integer := 1;
priority: float);

Examples:

(1) 3 identical servers, 1 place in the model to
wait for service, therefore no select criterion.
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Declaration: ver" is so high, that rather complicated Ada con-
- structs are used to implement this. Very little
clerk : service { capacity => 3, about Ada syntax and semantic has to be known to
queue_pame_list => (waiting_room)); write rather big discrete event oriented simula-

Application:

wait (clerk,waiting room);
hold(uniform(30.0,50.0));
release (clerk);

if status (elerk) = busy and then
average_residence_time(waiting_room) > 50.0
then
outlet (exit_door);
else
wait (clerk,waiting room)j
end if;

Usage of the SNA's:

if status (clerk(3)) ‘then ....;
put (preemption_count(clerk));

(2) Resource of 100 freight_cars; two places where
entities can wait.

Declaration:

freight_car : resource
( capacity => 20,
queue_name, 1ist => (station_1, station_2),
select_criterion => cyelie);

Application:

wait (freight_car, at_gqueue => station_1)4

wait (freight_car, abt_gqueuve => station_2,
units_requested => 5);

release (freight_car,5);

€39 This example demonstrates the use of the fact,
‘that an entity Hhas not to wait for the service on
seizing the sebrver: A car is picked up from a big
service statioh. This requires ‘the following
actions: the invoice has to be igsued (three
cashiers) and the car has to be brought from the
parking lot (two man). Both actions can be done
independently. .

cashier: service
( capacity => 3,
, queue, name_list => (waiting cashier));

valet_driver: service
{ capacity => 2,
queue_hmame_list => (waiting valet));

-Application: The relevant part of the network:
1

request (cashier,waiting cashier,
uniform(5.0,15,0));

request (valet_driver,waiting valet,
uniform(10.0,15.0));

wait_end service {(cashier,valet_driver));

t
5. MODEL DEVELOPMENT

“The nétwork or transaction flow. part of the Ada
Simulation Support Environment differs .from the
‘rest 0f the low level support packages. The degree
"of abstraetion reached by .a -construct Iike "ser-

tion models. In principle the knowledge about how
to define variables, how to construet expressions,
how to write statements and how to compile Ada
programs is sufficient. Generic packages and pro-
cedures and instances of those are used intensi-
vely in the ASSE network part. This would require
quite sophisticated %knowledge about these con-
structs in cases, where the user addresses rather
simple actions like to define a service process or
to wait for a server.
\

In this case a specific simulation language has
advantages over even the best designed package,
because such a language allows to formulate a
model (if it fits in the world view of the lan-
guage) in an absolute straightforward form. A
natural way to combine the advantages of Ada -and
the advantages of .a specifiec, suitable 'notation
should be a language derived from Ada. This means
to define a superset of (possibly a subset of)
Ada. But both, supersetting or subsetting of Ada,
is decidedly against the intentions of MAda. My
personal view is, that an extension of Ada in form
of a preprocessor together with a standard package
for simulation (in analogy to the package STANDARD
for Ada) is very desirable, legal (hecause it
would define a new language, not Ada) and even if
it would not be legal, it could not be prevented.
We call this the ASSE Network Language.

A similar, but slightly different approach would
‘be an interactive system which allows a user to
specify his model in form of a dialogue. Then an
Ada program is build out of these specifications
by that interactive system.

A negative effect for both versicns is that a user
is sometimes -confronted with obscure error mnmes-
sages from the (for him invisible) Ada compila~
tion, a well known effect with preprocessors.

Example: Inspection Station on a Production Line

We use this example to demonstrate some aspects of
the possibilities of the network part of the Ada
Simulation Support Environment.

The original example is from Schriber (1974). A Q-
GERT version of the example can be found in Prits-
ker (1977), a SLAM version in Pritsker (1979).

"Assembled television sets move through a2 series
of testing stations in the final stage of their
production. At ¢the last of these stations, the
vertical control setting on the gets -is tested. If
the setting is found to be functioning improperly,
the offending set is routed to .an adjustment sta-
tion, where the setting is modified. After adjust-
ment, the television set is sent back to the last
inspection -station, where the setting is again
inspected. Television sets passing the final iIn-
spection phase, whether the first time or after
one or more routings -through the adjustment sta-
tion, pass on to-a packing area. ... Two in-
spectors work side_by_side at the final inspection
station. ..."

The dimplementation of the model in ‘ASSE network
form, using the ASSE Network Language.
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model body TV_inspection_and_adjustment is
entity_name is (tv_set);
last_station_exit : termination;

model last_station is

enter entrance;

outlet last_station_exit;
end last_station;

arrival : creation ( entity_kind => tv_set,
initialization => tv_set_initialization,
enter_name => last station.entrance,
time_between_creations => uniform(3.5,7.5));

model body last_station is

waiting_sets : queue;
waiting rejects: queue;

inspector : server
( capaeity => 2,
queue_name_list => (waiting_sets) );

ad justor : server
( capacity => 1,
queue_name_list => (waiting rejects) );

network

accept entrance;
loop
service (inspector, waiting_sets,
uniform(6.0, 12.0) );
if uniform < 0.15 then
service (adjuster, waiting_rejects,
uniform (20.0, 40.0) );
else
exit;
end if;
end loop;

outlet (last_station_ exit);
end last_station;
simulate

initialize (0.0, 480.0};
trace ( first_execution => 0.0,
last_execution => 60.0,
trace_list => (node_arrivals,
entity_sna));
start_simulation;

end TV_inspection_and adjustment;
Discussion:

We have renounced intentionally all comments in
our program. We believe, that the code presented
above is selfdocumenting and more easily readable
than the corresponding GPSS or SLAM code. We con-
cede that our code contains more verbiage. But
this is in accordance with the fact that program
code is read a hundred times more often than it is
written. The additional verbiage helps the reader
essentially; it costs the writer only minimal
time.

6. MODEL DEVELOPMENT USING THE INTERACTIVE SYSTEM

It 1is not easy to reproduce an interactive dialo-
gue in printed form. We show here only two of the
screen forms. Places, where user input is possible
are indicated by underlined fields; an actual
input is surrounded by a box.

6.1 Declaration of a Queue

Ada Simulation Support Environment
k%% Model Design ¥%%
¥ Network Part *

Queue Declaration

Queue name waiting_rejects

Capacity 32767 (1..integer'last)
Initial occupancy 0 (0..integer'last)
Ranking _EIFO (FIFO,LIFO,HVFO,LVFO)

Block servers when full

The input of this form is done in three steps:

1)  The name of the queue is entered.

2) In the second part one has to enter:

- The ranking of the entities in the queue.
The default value is FIFO.

- The maximum number of entities which can
be held in the queue.

The default value is integer'last.

- The initial occupancy: how many entities
shall be in the queue when the simulation
starts.

The default value is O.

3) In the third part of the form one enters the
names of the servers who shall be blocked
when the queue is full. This list is open
ended.

6.2 Declaration of a Server

The input of this form (see next page) is done in
three steps:

1) The name of the server is entered.

2) The preempt flag can be set. The default
value is NO. In our case the server is not
preemptable.

The default number of parallel servers is 1.

3) If entities can wait in different queues for
a server, one has to indicate the select
criterion; then the list of queue hames is
entered. This list is open ended.

567



568 Heimo H. Adelsberger

Ada Simulation Support Environment
®%% Model Design ¥¥%
* Network Part *

Server/Resource Declaration

ad justor

|Server name

Preemptable
Number of parallel servers_ 1

NO (YES,NO)
(1..integer'last)

‘Related queues:

Select criterion:

.. given order _ cyeclic,

_ random _ assembly mode option

_ largest __ smallest average number
_ Jlongest _ Shortest waiting time
_ largest _ smallest queue

largest remaining capacity
.. smallest remaining capacity

List:
waiting_rejects

7. INTERACTIVE TESTING OF MODELS

The model can be executed in an interactive mode.
In this case the model is under control of the
model veprification package. The trace feature can
be switch on and off at any time. In that case all
variables can be displayed and changed; all pro-
cesses {queues, servers etc. ) can be watched. The
trace can be controlled via display conditions.
The output is organized like in a Smalltalk envi~
ronment. A user can form the screen layout accor-
ding to his intentions, composing it from diffe-
rent watch-forms, provided by the interactive
model verification package. We are showing here
the follow up of the server and the queue, defined
above.

7.1 Watching a Server

Definition of the display condition:

Ada Simulation Support Environment
%% Model Verification ¥¥¥
¥ Control Section *

Server/Resource

Server name ad justor

Display condition:

_ aftenm[::]steps

_ after executing action

| after arrival of entity ___ id
_ after arrival of entities ______ id
_ when simulation time is in .

_ break on keyboard-interrupt

Please fill out!

The name of the server and the display conditions
ate entered. If one of the conditions is true, the
simulation run is interrupted and the watch form
for the server is updated.

The display conditions:

1) The system halts after a number of steps (any
action related to the indicated server).

2) The system halts after executing a specific
action (SERVICE, WAIT, ALTER ete.).

3) The system halts after arrival of an entity
with a specific name and a specific id. If no
id is given, the system halts after the arri-
val of any entity with the specific name.

4) The system halts after the arrival of a
specified number of entities. The rules are
the same as in 2).

5) The system halts when the simulation time is
in the given range. If a NOT is typed in the
first field, the system halts, when the
simulation time is NOT in the given range.

6) The simulation is interrupted, when the break
key is pressed on the keybord.

The Watch Form for a Server

Ada Simulation Support Environment
¥%% Model Verification ¥¥¥

¥ Report *
Server/Resource
Server name: ADJUSTOR ____
Preemptable: FALSE
Number of related queues 1
Select eriterion  CYCLIC

Action requested: SERVICE

‘Involved entity
Name: TV_SET, Id: 73

The standard numerical attributes:

Status: BUSY

roeononooooo.. . Preempted: FALSE
Count: 72

Preemption count:

Capacity B 0
Current: 1 Remaining: 0
Processing time |
Consumed: 21.78 Remaining: 5.11

Utilization: Average holding time

0.93044 29.40

Please acknowledge

The watch form for the entity can be displayed

together with the wateh form for the server, if
detailed information about the entity is desired.

7.2 Watching a Queue
The follow up of a queue is defined like for a
server/resource process. A similar form is used

for the the display conditions. A range for the
queue size can be given additionally:

_ when queue size is in

An optional NOT can be typed in the first field.
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The Watch Form for a Queue

Ada Simulation Support Environment
%% Model Verification %%*
* Report ¥
Queue

Queue name: WAITING SETS

Capacity: 32767

Number of blockable servers: 0
Action requested: INSERT

Involved entity

Name: TV_SET I4: 73

The standard numerical attributes:

Size: 3 Full: FALSE

Content

Minimum: 0 Maximum: 3
Count : 57 Average residence time

. 36.22

8. EXTENSION OF THE MODEL

The example deals obviously only with a part of a
greater model. This meets our intention to demon-
strate the modular structure of the ASSE network
part.

We introduce the attribute 'model_type' for the
entity 'tv_set' and we include in the model a
packing area. This area can be worked out later in
detail following the top-down design principle.
For the global model it is important that the
packing area disposes of two entrances and one
exit. Entrance 'A' is for tv_set of type 'normal',
entrance 'B' for type 'de_luxe'. The choice of the
right entrance has to be performed in the global
model,

The basic structure is:

A

B
Arrivals Last Packing Depar-
from station area ture
production

8.1 Modification of the Model Last Station

It 1is necessary to alter slightly the original
model, since it was not designed to be used in
form of a submodel. First we separate and extend
the definition of the entity.

model entity_description is
type category is (normal, de_luxe);
type entity_name is (tv_set);
type attributes (kind : entity_name ) is
record
info: hidden_info;

model_type: category;
end record;
procedure tv_set initialization;
end entity_description;

model body entity_description is
procedure tv_set_initialization is
begin
if uniform < 0.25 then
current_entity .model_type:=de_luxe;
else
current_entity.model type:=normal;
end if; '
end tv_set_initialization;
end entity_description;

This submodel is obviousely degenerated; it con-
tains only the definition of the entity. But it
can be compiled separately (after being processed
by the ASSE-network-preprocessor), and it can be
used in other models via a context clause ('with
entity_description').

We specify the submodel ‘'last_station'!, using
'entity_description!'.

with entity_description; use entity_description;
model last_station is

enter entrance;

outlet last_station_exit;
end last_station;

This can be compiled separately.

We compile the model body 'last_station', taking
the unchanged code from the original example.

We have to augment the model 'TV_inspection_and -
adjustment' with the context clause and 1liberate
it from the code already present in ‘'entity_des~

cription' and 'last_station'. Then we can simulate
the model 'last_station' in this modified form:

with entity_declaration, last_station;
use entity_declaration, last_station;
model body TV _inspection_and_adjustment is

last_station_exit : termination;

arrival : creation ( entity_kind => tv_set,
initialization => tv_set_initialization,
enter_name => last_station.entrance,
time_between_creations => uniform(3.5,7.5));

simulate

initialize (0.0, 480.0);
trace ( first_execution => 0.0,
last_execution => 60.0,
trace_list => (node_arrivals,
entity sna) );

start_simulation;
end TV_inspection_and_adjustment;
This decomposition has two major advantages: the
code is easy to catch and changes of the model
body require only a recompilation of that compila-
tion unit.

8.2 Packing Area

Having performed these changes we can come back to
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the global model. We have to write first the model
specification and the model body for the packing
area. We give here only the model specification:

with entity description; use entity_description;
model packing is

enter .entrance_A;

enter entrance_E;

outlet packing exit;
end packing;

After sucsessful compilation of both units we can
write the global model.

8.3 Global Model

with entity_deseription, last_station, packing;
use entity_description, last_station, packing;
model body global is

model TV_inspection_ and_packing is

enter arrivals_from_production;
enter back from_ last_station;

enter back_ from_ packing;
outlet shipping;

end TV_inspection_and_packing;

arrival : creation ( entity_kind => tv_set,
enter_name => TV_inspection_and_packing.

. arrivals_from_production);
time_between_creations => uniform(3.5, 7.5));

shipping : termination;

last_station_exit:
link (back_from_ last_stdation);
packing exit: link (back_from last station);

model body TV_inspection_and_packing is
network
accept arrivals from production;

outlet (last _station.entrance);
accept back from_last_station;

if current_entity.model type=normal then
outlet (packing.entrance_A4);

else
outlet {(packing.entrance B);

end if;

accept back_from packing;

outlet(shipping);
end TV_inspection_and_packing;

simulate

initialize (0.0, 480.0);

trace ( first_execution => 0.0,
last_execution => 60.0,
trace_list => (node_arrivals,

‘ entity sna) );
start_simulation;

end global;
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