Proceedings of the 1983
Winter Simulation Conference
S. Reberts, J. Banks, B. Schmeiser (eds.)

481

"INTERACTIVE" - A USER FRIENDLY SIMULATION LANGUAGE

Ronald R. Mourant
Department of Industrial Engineering
and Management Information Systems
Northeastern University
Boston, MA 02115

Raman Lakshmanan

School of Engineering and Computer Science

Oakland University
Rochester, Michigan 48063

INTERACTIVE is a Pascal based network simulation language that is designed to

be used on microcomputers.
represented in a process-oriented

The language enables simulation models to be
. A structure using eighteen network node
symbols. The simulation of a network model is performed in four steps.

First,

the physical model is described as a network diagram by combining the node

symbols.
computer using a "Forms Editor."
a network flow model.
model.

In step 2, the details of the network diagram are entered into the
In step 3, INTERACTIVE automatically creates
The final step is the execution of the simulation
In this step, run-time status messages, summary reports, and graphical

plots are presented on the computer display for monitoring the system

performance and possible user interaction.

1. INTRODUCTION

"The availability of relatively inexpensive
mi crocomputers has provided the opportunity to
develop application software that wuse the
interactive features of the microcomputer. In
the past, simulation languages required the use
of mainframe computers and wminicomputers to
develop and analyze simulation models.
Simulation Tanguages such as GPSS (IBM 1981),
SIMSCRIPT {Kiviat et al. 1971), GASP (Pritsker
1974), and SLAM (Pritsker and Pegden 1979) have
been implemented on mainframe and
minicomputers. The cost associated with model
development and execution using these languages
on large computers is high.

Recently three simulation languages, SIMAN
(Pegden 1982), MicroMet (Talavage and Lilegdon
1983), and PSIM (Mourant 1983), have been
implemented on microcomputers. The use of
microcomputers results in: 1) Tower equipment
cost, 2) easy access to the computer, 3) lower
computer usage fees, and 4) interactive
_programming environment,

The widespread wuse of wicrocomputers has
resulted in the rapid gain in popularity of the
Pascal language. Pascal, initially developed to
teach structured programming techniques, has
been wused in the development of operating
systems, compilers, and application software.
The two major advantages of using Pascal are:

1) the construction of clear, readable programs,
and 2) significantly lower software development
and maintenance costs. Al11 the simulation
Tanguages mentioned above, with the exception of
PSIM, have been written in FORTRAN or Assembly
tanguage. FORTRAN does not support advanced
data structure declarations and FORTRAN programs
are generally unstructured compared to those
written in strongly typed languages such as
Pascal, ADA, and MODULA-2. Pascal's data
structures are directly applicable to define
simulation model components such as queues,
service facilities, scheduling techniques, and
routing of an object through a system.

In order to use the network simulation languages
GPSS, SLAM, SIMAN, and Micronet, the modeler
needs to be familiar with node statements
syntax. Also, the Tlearning of the operating
system and text editor commands greatly increase
the model development time. INTERACTIVE has
been designed to integrate the simulation model
development and its execution. The Tlanguage
combines Pascal's data structures and the
interactive features of the microcomputer to.
provide a step by step approach to simulation
model development.

This paper presents the details of the network
simulation Tanguage INTERACTIVE. Section 2
describes the modeling framework in INTERACTIVE.
“In section 3, we present the network node
" symbols, the simulation support functions, and
the uniquely designed "Formms Editor." Section 4

CH1953-9/83/0000-0481 $01.00 © 1983 IEEE



482

presents the complete modeling approach wusing

INTERACTIVE with the aid of an example.

2. MODELING FRAMEWORK

‘The modeling framework in INTERACTIVE is divided
into four distinct steps. Each step consists of
a "Process" which operates on an "Input" and
produces an “Output.” The input is from the
modeler or the output from the previous step.
Each process includes subprocesses to perform
specific tasks with the process. Figure 1
i1lustrates the overall modeling framework.

In the model description step, a network block
diagram of the physical model is drawn using the
node symbols. There are eighteen nodés
available. MNode names, node designs, and the
node features are carefully chosen to handle
.most real-world situations. Support functions
are included to identify system variables,
generate  random  samples  from statistical
distributions, and use mathematical functions.

The model input step is used to enter the
network node diagram into the computer. This is
done interactively using the foms editor. The
forms editor prompts the user for appropriate’
entries as the node details are being entered.

Ronald R. Mourant, Raman Lakshmanan

Tt}e completed network is stored as a node forms
file. This file is used as the input to the
model structure step.

The main function of the model $tructure step is
to convert the network nodes file into a network
flow model. This conversion is done
automatically by using a powerful and unique
data structure design.

The model execution uses the network flow model
to simulate ' the system perfomance. The
execution process is completely interactive with
facilities to interrupt the simulation run and
request status and summary reports, and
graphical plots.

3. MODEL DESCRIPTION AND INPUT

The primary means of modeling in INTERACTIVE is
through the use of the network node symbols.
These specialized nodes are connected to
illustrate the flow and decision processes in
the network. Once the network diagram is drawn,
the details of the network are entered into the
computer using the forms editor.

INPUT PROCESS QUTPUT
:
MODEL DESCRIPTION
PHYSICAL NETWORK NODE | | SIMULATION NETWORK
MODEL SYMBOLS SUPPORT DIAGREM
FUNCTIONS
MODEL INPUT
. NETWORK NODE NODE EXISTING
DIAGRAM, FORMS FORMS NODRES
1ypuT | ] EDIT FILE

MODEL STRUCTURE

DATA
| STRUCTURES

LOGIC
PROCESSOR

EXPRESSION
HANDLER

ERROR
HANDLER

MODEL EXECUTION

EXPERIMENTAL RANDOM
CONDITIONS VARI ABLES
GENERATION |
[buguss IPROCESS
PROCESSOR SCHEDULER RUN~TIME
OUTPUTS
EXPRESSION OBJECT
lEVALUATOR l PROCESSOR OUTPUT
- DATA
, I pecxsTon l OUTPUT FILES
PROCESSOR GENERATOR
USER ERROR
INTERACTION HANDLER

Fig. 12

Interactive Modeling Framework



"INTERACTIVE" - A User Friendly Simulation Language

3.1 Network Node Symbols

There are eighteen different node symbols in
INTERACTIVE to represent system components such
as queues, service facilities, and status change
options. In addition, a "branch" node symbol 1is
used to route objects leaving a network node.
Figure 2 shows the node symbols in INTERACTIVE.
The design and usage of the node symbols are
presented by Lakshmanan (1983) and in the user's
manual for INTERACTIVE (Lakshmanan and Mourant
1983). .

3.2 Simulation Support Variables and Functions
The simulation variables and functions are used

in expressions to.specify system properties and
branching decisions from a node. Tables 1 and 2

483

3.3 The Forms Editor

The forms editor is a menu driven full screen
editor specially designed to simpliyfy the
network model input into the computer. The main
menu selections for the editor is shown in Fig.
3. Each of these selections perform specific
tasks in the network model entry. The
Create/Append option 1is used to enter the’
details of a network model. The Edit option:
presents a 1ist of nodes in the network and
permits changes to be made in one or more
nodes. The lLoad and Save options transfer the
network model from the computer memory to a
storage medium or vice versa. The Print option
lists the network model details on a printer.

T1ist these variables and functions.

NODES TO SEND NEW OBJECTS INTO THE NETWORK
TINE BETWEEN GENERATIONS
FIRST I; :Im\xnum DISCRETE/
GENERAzggg__ GENERATIONS NETWORK
PROGEDURE #
GENERATE aNTERFACE
NODES TO DELAY OBJECTS FOR A SPECIFIED TIME
’ TRAVEL TINE
4 or SERVICE o
@TIME ' —
SERVICE TRAVEL
NODES TO HOLD OBJECTS (CONDITIONAL)
COUNT F [ yooe vaser| DROSK sy T
GRP JE E . BALK A N
HEW A A — = -A 00000
T . BUMP L
T NODE LABEL kK> T
CHANGEOBJ MATCH QUEVE
BLOCK o TT el ] PROSK [RESOUREE;|  BLOCK,) =T
2L s 4ooooals z:&’ﬁ-—-e;oooooﬁ i‘;—;{— tlboooo
U etk 31 e [T REw. T REqr
GATE RESOURCY, PREENPT
NODES TO CHANGE STATUS OF SIMULATION COMPONENTS
= RESQURCE
Soctont (1) o / frup oerron 7 RET. TIHE
GLOBVAR(I) := ANDLE OPTTON X
AsSTGN FIND RETURY
SELECT NODE
oPTLION STATDSLABEL
orrron
SELECTFILE STATISTICS status
OUTPUT PATH(S) SELECTION
1
O TERMINATE .
COUNT .
> . .
sTop TERMINATE
== — B
BRANCH

Fig. 2: "“INTERACTIVE" Network Node Symbols




484 Ronald R. Mourant, Raman Lakshmanan

VARIABLE DATA TYPE DEFINITION

feature array [1..10] of real array used to define

i . the features of an
object.

globalvar array [1..10] of real array to define real
valued simulation
variables.

glogical l array [1..10] of boolean array to define
booléan valued
simulation vatriables.

simtime real current simulation
time

simbegtime real simulation begining
time

i

simendtime real simulation ending

time

Table 1 Simulation Variables

MATHEMATICAL FUNCTIONS

RANDOM VARIABLE FUNCTIONS

abs{x} random {stream}
sin{x} poisson {mean, stream} .
cos {x} exponential {mean, stream}
, exp {x} . normal {mean, std_dev, stream}
log {x} uniform {low, high, stream}
in {x} erlang {mean, samples, stream}
4 atan {x} lognormal {mean, std_dev, stream)
sqr {x} beta {alpha, beta, stream}
gamma {alpha, beta, stream]}

sqrt {x}

weibull {alpha, beta, streaml}

triangular {low, mid, high,

userfunction {number}

stream}

Table 2 Simulation Functions

'Entering the Network

The details of the network model nodes are
entered into the computer by invoking the
Create/Append selection in Fig. 3. This
selection presents another selection menu as
shown in Fig. 4. Figure 4 1lists the node

symbols and a pointer to select the required.
When a node symbol is selected, the.

symbol.
forms editor presents a node form for the
selected node. Each node symbol has a unique
node form to input the node parameters.

.Figures § and 6 show the node forms for the
generate and queue nodes. The node fields are
entered by positioning the screen cursor to the
requests. The values of several fields in each
node form are defaulted.
one option 7s possible for a given field, the
options are listed on the screen. For example,
:the ranking options for the queue are Tisted "in
the queue node form. Based on the data type of
each. field, the forms edjtor keyboard input
_ procedures respond to valid entries from the.
modeler. In addition to the error free input,!

Also, when more than -

the forms editor prompts for additional node
parameters based on the values specified in the
fields. For example, the balking, bTocking, and

_bumping options from a queue node are requested

when the queue capacity is finite. Figure 7
shows this setup. .

Editing Neiwork Nodes

-

The edit selection in Fig. 3 pemmits a modeler
to view and change node parameters in the
network nodes already entered into the
computer. Figure 8 illustrates the editing
process in the forms editor.

The editor lists the nodes in the network along
with the branching paths from each node. The
options at the bottom of the screen permit
different operations on the nodes. In ordér to
view and modify a node's parameters, the "Edit"’
selection is made after positioning the pointer
on the screen %o the node. Then the forms
editor presents the node form for the node with
jts parameters 1listed in the appropriate
fields. This fomm is similar to the one
presented in the node foms entering process.



"INTERACTIVE" - A User Friendly Simulation Language 485

INTERACTIVE

Enter Selectian

Céreate 7/ aA(ppend Network
E{dit Network

L (pad network from a file ~>
S(ave network into a file —>
P(rint network

Bluit

Restart

Network Create/Edit

Fig. 3: Forms Editor Selections

Select a node

~» Assign
Changeabj
Find
Generate
Interface
Match
Preempt
Queue
Resource
Return
Selectfile
Service
Statistics
Status
Stop
Terminate
Travel

A and ‘ keys move the cursor

NODE SYMBOLS SELECTION

Press <RETURN> to accept indicated selection
Press <ESCAPE)> to end selection

Fig. 4: Node Symbols Selection

Node label: £

Assign time of generation to feature:l

Options
Do you want branching?: [Nl

GENERATE NODE FORM

Time between object generations: [++]
Generate first object at time : [0.01

Magimum number of objects to be generated: (++]

Command: CONTROL~A(accept ESCAPE(menu CONTROL-B(branches

Fig. 5: Generate Node Form

The Append and Insert options are wsed to append
or insert new nodes into the network at the
position of the pointer. Thus, the network can
be viewed "and modified with ease.

‘Saving the Network

_ the computer's storage medium.

The -save selection in Fig. 3 is used to store
the network model as a Pascal file of records in
This file is



486

Ronald R. Mourant, Raman Lakshmanan

.

Node label: [
Queue Ordering {1..4} 2

1. FIFO; 2. LIFD; 3.
Initial Number in Gueue:
Maximum Number in Gueue;

LFIFO

£01
L++]

Gueue Statistics? ¢ Lyl
Select Server? : [N1

QUEUE NODE FORM

LOW VALUELfeaturels

b
4. HIGH VALUE Lfeaturel

Command: CONTROL-A{accept ESCAPE(menu

Fig. 6:

Queue Node Form

Node label: fqueue 13
Rueuve Ordering {1..4} 2
1. FIFB; 2. LIFO; 3.
Initial Number in Queue:
' Maximum Number in GQueue:
When the Queue is full,
1. Balk the queue?
2. Block a server?

LFIFD

Lol

€101l
does an object
LYl
EN1
£N1

3. Bump an object?

Rueue Statistics? 1 LYI
Select Server? I [N

QUEUE NODE FORM

1
LoW VALUELfeaturel;

to node Cqueue_2 J

4., HIGH VALUE Lfeaturel

Command: CONTROL-Alaccept ESCAPE(menu
Fig. 7: Queue Node With Finite Capacity
INTERACTIVE —~ Edit Network Forms
Node label Node type .-« Node Branches to ...
<=> Project

tv_sets generate

queue_1 queue -

repair service

quit terminate

Command: A(ppend Di{elete E(dit Ii{nsert R{uit (Down $Up

. Fig. 8:

rgad as. records to edit the’nétwofk or to create
a.flow model of the network.

The forms. editor data structures. eliminate the
need for time consuming parsing techniques to

Editing Network Nodes

jdentify network statements and detect errors in
theri. The combination of Pascal data types and
the: error free input procedures permit direct
conversion of the  network model into an
executable form.



"INTERACTIVE" - A User Friendly Simulation Language ' 487

4, NETWORK MODEL EXECUTION

The network model is executed by selecting the
"Run" command in Fig. 9. There are two steps
involved in the network model execution: Flow
Model Creation and Flow Model Execution.

4.1 Flow Model Creation

"The network flow 1is created from the network
nodes file. The flow model is a set of Pascal
data structures which are used to represent the
simulation model componets and the movement of
objects or entities through them. INTERACTIVE
rautomatically creates this structure from the
nodes file. Also, the network model is checked
for incomplete network paths and dinvalid
references to node functions. When an error
occurs, the modeler can return to the forms
editor and correct the error.

4.2 Flow Model Execution

;The flow model execution process simulates the
network model for the given conditions. During
the simulation run the modeler can interrupt the
execution and request status and summary
reports, and graphical plots. Aiso, the
simulation variables can be changed to alter the
run conditions. The use of INTERACTIVE is best
illustrated with an example. This example,
models a computer facility with a single central
. processing unit (CPU). The problem 1is taken
" from Law and Kelton (1982).

cof 1

" have left the CPU.

Example: Jobs arrive at a computer facility
wi a single CPU with interarrival times that

are IID exponential random variables with a mean
minute. Each Job specifies upon ‘its
arrival the maximum amount of processing time it
requires, and the maximum times for successive
jobs are IID exponential random variables with a
mean of 1.1 wminutes. However, if m 1is the
specified maximum processing time for a
particular job, the actual processing time is
uniformly distributed between 0.55m and T.05m.
The CPU will never process a job for more time
than its specified maximum; a job whose required
processing time exceeds 17ts specified maximum
Teaves the facility without completing service.
Simulate the computer facility until 1000 jobs
The jobs in the queue are *
processed in a FIF0 manner. Estimate the
average delay in queue of jobs, and the response
time for each job.

Solution: Fig. 10 shows a simple layout of the
computer facility. The processing time
specification dinvolves computing the actual
processing time for the incoming job.

Mcdel Development

The network diagram for this system is shown in
Fig. 11. Jobs are created at the generate node
"jobs" with interarrival times exponentially
distributed with a mean of 1 wminute. Each
incoming job is then routed through a sequence

“INTERACTI1IVE"

SIMULATION

LANGUAGE

Version 1.0

Select Option:
N(etwork Input/Edit

R{un Simulation Model

E(xit to Pascal Operating System

April 1983

Fig. 9:

INTERACTIVE Executive Menu

Jobs Process

-—-—-—;’ time

Jobs queue

CPU

Fig. 10:

Computer Facility Layout



A88 .

Ronald R. Mourant, Raman Lakshmanan

exponential (1)

cut_time
; feature(2) :=
Feature (1)
Feature(2) feature(l)

J max, time serv_time
0.0 feature(l) := feature (2) =
55 | | exponential(1.1) | uniform i

(.55%f£1,1.05%£2) 1

jobs

/ time in system 5 1000

" cpu_q

L B ‘ f , N
- ;+O QOO0 —/l> featz\;;:e .—-I response time H>>—-'—
N N
cp

u, resp_time exit

Fig. 11: Network Diagram of the Compﬁter Fac-'ﬁ‘ity

of assign nodes to compdie its actual processing
time. The assign node "max_time" assigns the
requested maximum processing” time to feature 1
of the object. The "serv__time" assign node
computes " the actual processing time as a
function of the requested maximum processing
time. The actual processing time is assigned to
feature 2 of the object. Objects leaving the
"sery time" assign node are routed to assign
node ™Cut_time" or the queue node "cpu_q" based
on the branching conditions at the node. When
the actual processing time is greater than the
requested maximun processing time, the object is
routed to the assign node "cut_time" where s
processing time is set to the requested maximum
time; then the object is sent to the "cpu_q".
Otherwise the object is sent to the gqueue node
"cpu_q" directly. The service node "ecpu' s
used” to process objects from the queue. The
service time is specified as the value in
feature 2 of the object being served. Objects
leaving the service node pass through a
statistics node "resp_time" where the response
© time is collected as the time in the system.
Then the objects are terminated at the "exit"
- node, The terminate count is set to 1000 %o
signal the end of the simulation run.

.The network model details are entered into the
compuiter using the forms editor. The completed
forms for this example are shown in Figs. 12
through 21. These forms are self explanatory
and. the vreader can easily follow the steps
involved in entering the forms. The completed
forms are saved in a network nodes file and

specified as the input file to the execution

step.

i

Model Execution

Figures 22 and. 23 present the flow model
creation process for this example. The
brafiching labels match with the network diagram
in. Fig. M.

The simulation. execution shows the status of the
run. as shown in Fig. 24. The modeler can
.interrupt the run and select the options

'

listed. We present some of the intermediate
outputs that were generated by interrupting the
simulation run.

Figure 25 shows the monitor report starting at
time 87.2561 minutes. The Tist shows the
processing of objects as they flow. through the
nodes. This report can assist the modeter to
check the Tlogical decisions in the model. As an
example, the object entering the assign. node
"cut_time" at 90,7914 minutes needs a processing
time of 0.614 minutes. Since this duration fis
greater than the requested processing time, the
actual processing time is reassighed to be the
requested maximum time. Then the object joins
the queue node “cpu_q"..

The status reports option in Fig. 24 presents
menu selections shown in Fig. 26. These
selections are used to view the status of
simulation components. The status of the queue
at 92.0630 minutes is shown in Fig. 27. Jobs
102 through 105 are waiting in the queue and
their actual processing times are as Thdicated
by feature 2. The future events. in the
simulation calendar at 92.0630 minutes dre shown
in Fig. 28. Figure 29 shows the sumnary report
for the run at 92,0630 minutes. After viewing
the interrim reports. the simulation execution is
resumed and vrun is completed.

Summary of Results

The complete summary report for the run is shown
in Fig. 30. The "cpu_g" Tists the average
waiting time in the queue to be 6.93 minutes.
The average response time for each job was 6.84
minutes and the CPU utilization was 85%.

.



INTERACTIVE = Praject Details

Title: LCPU Facilityl
Author: Eramanl
Date: Cjuly 15, 19831

Number of Simulation Runs: [1l
Maximum number of features per object: [21
Simulation begin time: [ 0.0 3

Simulation end time: L 1.Se+031

Command: CONTROL-A{accept ESCAPE(menu

GENERATE NODE FORM

Node label: Ejobsl

Time between object generations: [exponential {1, 131
Generate first object at time ¢ [0.0]

Maximum number of objects to be generated: LC4++1

Assign time of generation to feature: ({03

Optians
Do you want branching?: IN]

Command; CONTROL-A(accept ESCAPE(menu CONTROL-B(branches

Fig. 12: Project Details Form for the Computer
Facility Model

Fig. 13: Generate Node "Jobs"

ASSIGN NODE FORM

Node label: fmax_timel

Assignment Selections: F(eaturefil G(lobalvarfil L{ogicallil

[Feature [ 1]] := [exponential {1.1, 231

Options
Do you want branching?: N1

Command: CONTROL-A(accept ESCAPE(menu CONTROL-B(branches

ASSIGN NODE FORM

Node label: [seqv_time]

Assignment Selections: F(eaturelil G(leobalvariil L<(ogicallil

fFeature [ 211 = Cuniform {0.55*featurel1], 1.0S5*featurel13, 3I3}1

Options

Do you want branching?: LYl

Total number of branches: [213

Maximum number of abjects to leave node at one time: [13

Command: CONTROL-A(accept ESCAPE(menu CONTROL-B(branches

Fig. 14: Assign Node "max_time"

Fig. 15; Assign Node "Serv_time"

abenbue uotjeinuts ALpudidd 43sn Y - ,IAILOVHALNI,

68%



CE NS

‘Total Number of branches: 25

Braﬁéhés‘fruﬁ Assign Node: serv_time

£
Maximum- # of Objects to leave pode: U

<

Branqﬁ to

Probability/Condition

1. beut_timel

, 2. fcpu. gl

[featurer2] > featurel111

Etrued:

06¥

ASSIGN NODE FORM
*
Node label: Lecut_time]
PéSignmenﬁ Selections: F{eaturefil G{lobalvarifil L{ogicalfil
IFeature L[ 213 := [featurefl1ll

Options
De you want branching?: EN3

“Commands CONTRBU-Afaccept ESCAPE(menu CONTROL~B(form

Command: CONTROL-A(accept ESCAPE(menu CUNTRDL-Bkbranches

Fig. 16: Branches From Assign Node "sery_time"

| Nodg Fabel:
Queue Orfdering
1. FIFO; 2.
| Initial Number
.ﬂax;@qm Number

Select Server?

RQueue Statistics?

QUEUE NODE FORM

Lepu_ql

{1..4¥ ¢ CFIF0 3

LIFO; 3. LOW VALUELfeaturels 4. HIGH VALUE Efeaturel
in Queue: £01

in Queue: [++1

3 LY
: LN

Fig. 17: Assign Node “cut_time"

SERVICE NODE FORM

Node label: Lcpul

Service Time: CLfeaturel21]
Number of Paralell servers: £il
Options

Do you want to select an object? [N

Do you want branching?: N3

- UeURIIYSYRT URWRY JURANOK Y Pleuoy

Commarids CDMTRQL—A(accept' ESCAPE (menu

Fig. 18: Queue Node “cpu_g"

-Command: CONTROL-A(accept ESCAPE {menu’ CONTRDL—B(branchés

Fig. 19: Seryice Node “epu®



STA%ISTICS NODE FORM

Node label: fresp_timel
Type: [Time in system

{see below for selections 1..5>
Identifier: [time in cpul

Options

Do you want a histogram? [N1

Do you want branching? END

Statistics types

1. Current time 2. Time between arrivals
3. Time in system 4. Feature L[il

S. Globalvar [il

TERMINATE NODE FORM

Nade label: Lexitl
Number of objects to terminate simulation: £10003

Command: CONTROL-A(accept ESCAPE(menu CONTROL-B(branches

Command: CONTROL-A{accept ESCAPE(menu

Fig. 20: Statistic Node "resp_time"

Fig. 21: Terminate Node "exit"

“INTERACTI V E" Network Model Building — Pass 1

Node Label Node Type Branches Errors
jobs Generate 0
max_time Assign o
serv_time Assign cut_time

cpu_q (¢}
 cut_time Assign ‘o’
cpu_q Queue 0
cpu Service 0
resp_time Statistics [¢]
exit Terminate o

——— Total Errors in Pass 12 03 Press <RETURN> to continue ——-

"INTERACT IV E" Network Model Building —— Pass 2

Node Label Node Type Branches Errars

jobs Generate <Next> Q

max_time Assign <Next> o]
serv;time Assign cut_time

cpu_q 0

cut_time Assign <Next> ‘o’

cpu_g Queue <Next> [¢]

cpu Service " <Next> o]

resp_time Statistics <Next> o

exit Terminate <None> (4]

~——_ Total Errors in Pass 22 03 Press <RETURN> to continue ——

Fig. 22: Flow Modei Creation-Network Details

Fig. 23: Flow Model Creation-Node Details

abenbue uotie(nuis A(pustdd Jasn y - ,IATLOVYILNI,

69



| Run:

INTERACTIVE -~

Time:

Simulatioﬁ Status

87.2561

Press any key to pause & select

Selections:
S{tatus Reports

Cthange Variables

Memorys

26768

“INTERACTTIV

E* — Simulation Monitor

Obj _Time Obj # .. Object Features ..

Mi{onitor the System OFF
Pllots
R{esume Simulation
g(utput Device .consale
) Bluit
Fig. 24: Simulation Run Status

SimTime At Node Type
87.2561 serv_time Assign IN 87.2586 103 0.487 0.0
87.2561 cpu_g BQueue IN 87.256 103 Q.&87 0.447
88.0431 jobs Generate NEW <none’>
88.0431 max_time Assign IN 88.043 104 0.0 0.0
88.0431 serv_time Assign IN 88.043 104 0.187 0.0
88.0431 cpu_q Gueue IN 88.043 - 104 0.187 0.166
88.5517 cpu Service ouT  76.2356 95  2.197 1.922
88.59517 resp_time Statistics IN 76.236 5 2.197 1.922
88.39517 exit Terminate IN 76.236 95 2.197 1.922
88.5317 cpu Service CHK <none>
88.5517 cpu Service IN 756.811 b6 2.201 1.5962
90.1138 cpu Service ouT 76.811 96 2.201 1.562
90.1138 resp_time Statisticg IN 76.811 94 2.201 1.562
0. 1138 exit Terminate IN 76.811 26 2.201 1.562
90.1138 cpu Service CHK <none’X>
90.1138 cpu Service IN 7B.450 97 0.322 0,222
90.3359 cpu Service our  78.450 97 0.322 0.222
90.3359 resp_time Statistics IN 78.450 97 Q.322 0.222
90.3359 exit Terminate IN 78.450 97 0.322 0.222
90.3359 cpu Service CHK <none>
‘90.339% cpu Service IN 80.216 98 1.020 1.020
.
50.7914 jobs Generate NEW <none>
0.7914 max_time Assign - IN 90.791 105 0.0 0.0
0.7914 serv_time Assign IN 90.791 105 0.5605 0.0
90.7914 cut_time Assign IN 90.79%1 105 0,605 0.414
90.7914 cpu_q Gueue IN 90.79% 105 0.605 0.605
91.3559 cpu Service ouT  80.216 98 1.020 1.020
91.3559 resp_time Statistics IN 80.216 98 1.020 1.020
21.3559 exit Terminate IN 80.216 98 1.020 1.020
21.3559 cpu Service CHK <none> .
91.3559 cpu Service IN 80.238 9 0.451 0.422
91.7783 cpu Service auT  80.23B 99 0.431 0.422
91.7783 resp_time Statistics IN 80.238 99 0.431 0.422
1.7783 exit Terminate IN 80.238 99 0.43% 0.422
91.7783 cpu Service CHK <none>
21.7783" cpu Service IN 82.144 100 0.215 0.196
?1.9742 cpu Service OuT 82.146 100 0.215 0.196
91.9742 resp_time Statistics 1IN 82.1464 100 0.215 0.196
91.9742 exit Terminate IiN B2.1446 100 0.215 . 0.1%96

Fig. 25:

Simulation Monitor Report

a6Y

UBURIIYSYRT] UBWeY €IUBANOK ‘Y PLeusy



INTERACTIVE -— Status Reports
Runz 1 Simulation Time: 92.0360
**% "I NTERACTIVE" FINAL REPORT *x%
Version 1.0
You may view/print the: C(alendar Events Project: CPU Facility
F(inal Reports Author: raman
G(ate Info. Dat. s suly 1S <
@({ueue Info. ate july s 198
R(esource Info. - Simulation time = 92.0630 Run: 1
S(erver Info.
or you may : E(xit to the simulation menu
Queue Node: cpu_q
Queue Capacity: ++
Number in Queue
Standard Minimum Maximum Current 4
Average Deviation - Length tength Length
- 7.41 4.6803 o 16 4
. . Waiting Time in Bueue
Fig. 26: Status Report Menu Total Through: 101
Total Waited = 93
Standard
Count Average Deviation Minimum Maximum
93 7.15 3.9795 0.1329 14.3097
"INTERACTIVE" —— DObjects in Queue: cpu_g
Run: 1 Simulation Time: 22,0630
@ Time Obj_Time Obj # .. Object Features .. Service Facility: cpu
85.292 B85.292 102 1.208 1.086 Stavdafd Min Number Max Number Number Now
87.25& 87.256 103 0.4687 0.447 Average Deviation Busy Busy Parallel Busy
88.043 88.043 104 0.187 0.166 )
90.791 90.791 105 0.605 0.605 0.95 0.2234 0 1 1 o
Fig. 27: ‘"cpu_g"
g pu_q Status Statistics: resp_time
time in cpu
Standard
“INTERACTIVE®” —-- Simulation Calendar Caunt Average Deviation Minimum Maximum
Runs: 1 Simulation Time: 92.0630 101 7.44 4.3079 0.0367 15.2904
Time At node Type Obj_Crtd Obj # .. Object Features ..
92.0630 cpu Service CHK <none>
92,2225 johs Generate NEW <none>
Fig. 28: Simulation Calendar Status Fig. 29: Interrim Summary. Report

abenbue uoLjejnuls A|pustdd 48N ¥V - 4IAILOVHALNI.

€6t



494 Ronald R. Mourant, Raman Lakshmanan

*x¢ "I NTERACTIVE" FINAL REPORT %*%%
Version 1.0
Project: CPU Facility
Author: raman
Date @ july 15, 1983
Simulation time = 974.4462 Run:s 1
Queue Node: cpu_q
Gueue Capacity: ++
Number in Oueue
Standard Minimum Maximum Current
Average - Deviation Length Length Length
&.31 7.2157 0 29 22
Waiting Time in Queue
n Total Through: 1000
Total Waited ¢ 867
Standard
Count ‘Average Deviation ‘Minimum Maximum
8567 6.93 6.3883 0.0039 24.6143
Service Facility: cpu
Stapdard Min Number - Max Number Number Now
Average Deviation Busy Busy Parallel Busy
0.85 0.3524 ] 3 1 o]
Statistics: resp_time
time in cpu
Standard
Count Average Deviation Minimum Max imum
1000 &.84 b.4673 0.0147 25.6232

Fig. 30: Final Summary Report

Kiviat PJ, Vileneuva R, Markowitz HM (197T),

5. SUMMARY AND CONCLUSIONS
SIMSCRIPT I1.5, C.A.C.I., Los Angeles, 1971.

This paper presented: only a brief veview of
INTERACTIVE. The language has been used to
model several large and complex systems. The
interactive features used in the development of
simulation models and their execution make the
language easy to Tearn and use. INTERACTIVE can
pe used by engineers and decision makers to
analyze discrete systems in a short amount of
* time. Also, the Tlanguage can be used as an
_effective teaching aid in simulation modeling
courses. g

The approach used in the design of INTERACTIVE '

is the first step in development of an
integrated simulation software system. The
Pascal Tanguage permits a flexible design toi

altow future enhancements to the language.
_Efforts are underway to include a continuous’
system modeling -.capability and a data ‘base
support to ‘the language.

REFERENCES

IBM General Purpose Simulation System V User's
WHanual 19819, IBM, White Plains, N.Y.

Lakshmanan R (1983), Design and 'Imp]‘ementai:i on of

a Pascal Based Interactive Network Stmulation
Language for Microcomputers, Unpublished Ph.D.
Dissertation, Oakland Universiity, Rochester,
MI.

Lakshmanan R, Mourant RR (1983), INTERACTIVE
User's Manual, Micro Simulation, Boston, MA.

Law AM, Kelton WD (1982), Simulthon Medeling and
Analysis, McGraw Hill. -

Mourant RR {1983), PSIM User's Manual, Micro

Simulation, Boston, MA.

pegden CD (1982), Intreduction ‘to SIMAN, Systems
Modeling Corp., State Coﬂege, PA.

Pritsker AAB (1974), The GASP IV Simulation
Language, John Wiley.
Pritsker AAB, Pegden CD (71979), Introduction to

Simulation and SLAM, Systems Publishing Co.,
West Lafayette, IN.

Talavage JJ, Lilegdon WR (1983), MicroNet User's
Manual, Pritsker and Assoc., Hest Lafayette,
I‘l]

.



