Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

419

A SOFTWARE DEVELOPMENT ENVIRONMENT FOR SIMULATION PROGRAMMING

Richard Reese
Assistant Professor
Department of Computer Science
Stephen F. Austin State University
Nacogdoches, TX 75962

Sallie Sheppard
Associate Professor
Department of Computer Science
Texas A&M University
College Station, TX 77843

A prototype simulation software development environment (SSDE) has been developed
at Texas ASM University as a means of providing a flexible system for the develop-

ment of simulation software.
series of data bases and a language.

It utilizes an underlying structure composed of a
This framework provides the means of hiding

the file system, hiding the development support tools, and automating the tran-
sition between the different phases of development. The prototype SSDE includes
several tools developed specifically to support simulation programming. This
paper presents the rationale for software development environments and gives an
overview of the prototype which has been constructed.

1. INTRODUCTION

Recently the field of computer science has seen
the introduction of software development environ-
ments. A Software Development Environment (SDE)
has been defined as "... a set of techniques to
assist the developer(s) of a software system, sup-
ported by some (possibly automated) tools, along
with an organizational structure to manage the
process of software production" (Wasserman 1981).
SDEs with their supporting tools and organiza-
tional structure have been designed to help cope
with the complexities of software development and
the associated costs.

The support software of today evolved from a
myriad of simple, isolated programs to the more
interrelated and complex tools present in many
environments. These tools have typically been
designed to assist the implementation of a single
specific phase or aspect of the program life
cycle. The availability of such a large variety
of tools and the software sophistication implied
in their use, however, has tended to distract the
developer from the purpose of the target software.
As a result, potential users of software tools
frequently fail to employ these tools either be-
cause they were unaware of their existence or be-
cause it was simpler to do without the support
than to deal with the added complexity of using
them.

This material is based upon work supported in part
by the National Science Foundation under Grant
No. ECS-8215550

SDEs seek to overcome these difficulties by pro-
viding an integrated environment in which the
appropriate tools are made available but with as
many as possible of the implementation details
hidden from the user. The term "hiding" refers

to the process of decreasing the user's awareness
of tools or supporting file structures by reducing
the need to explicitly access these entities. The
ultimate SDE can be envisioned as a system which
automatically produces the end product given the
requirements of the software that-is desired by
the end user. Although this goal is beyond the
state of the art at this time, current research is
investigating techniques to make such systems a
reality.

The purpose of this paper is to present an experi-
mental SDE which has been developed specifically
to support simulation programming at Texas A&M
University. First three other major SDE efforts
will be briefly summarized to provide background
on current state of the art. Next the experi-
mental simulation system will be presented along
with a description of the use of specific tools.
Finally the preliminary conclusions drawn from
the use of the prototype relating to the utility
and feasibility of SDEs to support simulation
programming will be discussed.

2. PREVIOUS RESEARCH

SDEs have historically been concerned with man-
aging the complexity of software development.
Initially the environments were very unstructured
and had few tools. The file systems implemented

CH1953-9/83/0000-0419 $01.00 © 1983 IEEE

420 Richard Reese, Sallie Sheppard

in these early SDEs were primitive with compilers
and editors being the primary tools included.

The UNIX* PWB (Programmers' Work Bench) was one of
the first SDEs to emérge and win wide acceptance
(Bourne 1978). A major feature which contributes
to the usefulness of the UNIX PWB is the common
and consistent tool interface which its simple
concept of a file provides. A major weakness of
UNIX has been the Tack of information sharing by
the system tools. As a means of alleviating this
weakness, many SDEs developed since UNIX PWB have
been incorporating an underlying database (DB).
Many of the tools present in these newer environ-
ments interface with the DB which serves as a re-
pository for knowledge about the environment.
Tools which have some knowledge of the environment
can enhance the power and utility of the environ-
ment by providing new and improved services.

Interlisp is another SDE which has been in use
for a number of years (Teitelman and Masinter
1981). Based upon the Lisp programming language,
Interlisp has been widely used within the arti-
ficial intelligence community and in the develop-
ment of expert systems. Interlisp has demon-

strated the advantages of tightly integrating the '

environment and the language and is very easy to
extend. The technique of incorporating into one
software development phase the process of coding,
debugging, testing, and maintenance is also
_supported. One drawback to the Interlisp system
is that its complex interfaces tend to require
that the user have considerablé expertise with
the system prior to performing any productive
work.

Another important recent contribution to the SDE

development is the AdaR Programming Support
Environment (ASPE) {(Buxton 1980). The U.S. De-
partment of Defense recognized that the tools
and environment which are used to develop a pro-
ject are at least as important as the language
itself. Therefore they sponsored the development
of a set of requirement$ which define a collec-
tion of software tools to support Ada applica-
tions. This APSE is defined in several levels to
promote transportability of the environment to
various hardware. At the inner level is the host
operating system. The next layer, called the

. Kernel Ada Programming Support Environment (KAPSE)
provides the logical-to-physical mapping of re-
sources for the remaining layers. The hext Tlayer
the Minimal Ada Programming Support Environient
(MAPSE), contains what is considered to be the
minimal set of tools while the outermost layer,
APSE, includes advanced tools to support various
phases of the 1ife cycle and specific projects.
Thus the tools themselves can be designed and
implemented in a machine jndependent fashion with
appropriate implementations of the KAPSE provid-
ing the linkage to the actual hardware on which
the APSE exists. Several organizations are
currently working on implementations of APSEs.

* UNIX is a trademark of Bell LABS.

R Ada is a registered trademark of the U.S.
Department of Defense.

3. PREVIOUS SIMULATION ENVIRONMENTS AND TOOLS

Recent interest in software development environ-
ments has pointed out that there is more to devel-
oping a software system than simply choosing the
most appropriate language. Tools are needed
throughout the 1ife cycle of the project to support
the system developers. The evolution of SDEs. to
support simulation software development has fol-
Towed that of general application SDEs. <Initially
a number of tools were developed to support spe-
cific aspects of simulation programming. A recent
paper by Sheppard (1983) notes the use of various
software engineering tools and techniques as they
apply to simulation programming. Other simulation
support tools include program generators (Mathew-
son 1981) and a database system which allows
queries before, during and after program execution
(Standridge 1981). 1In general other SDEs for
simulation also apply only to a single stage of
the software 1ife cycle (Callender 1980, Clarkson
1980). None of these systems, however, provide
state of the art integrated software development
environments for simulation.

A simulation SDE has been designed and prototyped
at Texas A&M University as part of a larger pro-
ject whose primary goal is the development of a
microprocessor-based distributed digital simula-
tion system (Sheppard, Phillips and Young 1982).
The research objectives of the project are (1)

to conceptually design a simulation language based
upon distributed processing, (2) to implemént
these concepts through construction of an execut-
able simulation system, and (3) to evaluate the
feasibility and utility of distributed simulation.
A companion paper (Wyatt, Sheppard and Young 1983)
gives the rationale for distributed processing in
simylation and describes the development of a
distributed simulation language.

The primary purpose of constructing a prototype
simulation software development environment (SSDE)
as part of this project was to provide a means to
explore the feasibility and utility of SDEs for
simulation programming. The SSDE has been imple-
mented on a Texas Instruments (TI) 990/12 mini-
computer using the DX10 operating system. The
implementation language is TI Pascal with the TI
DBMS being used to provide DB support.

4. THE PROTOTYPE SSDE

The prototype SSDE developed at Texas AM Uni-
versity is composed of a system of Data Bases (DBY)
and a framework which permits the sharing of
environmental data, provides the basis for sup-
porting specific design methodologies, permits

the file system and the tools to be hidden, and
allows for multiple views of the software being
developed (Reese 1983). This SSDE uses the con-
cept of a design plan as the framework or control
mechanism of the development process. A design plan’
{DP) is defined as a user modifiable, hierarchical
set of instructions used by the SSBE to govern and
direct the software development process. Design
plans -are used to provide-a framework for the SSDE.
A set of design plans are constructed to support
specific software lTife cycle models. Each pian
invokes a series of tools or other design plans
aEpropriate for specific life cycle phases or sub-
phases.

Software Development Environment 421

For example, to support generation of code the
design plan may first invoke an editor to allow
the user to create a module. This will be fol-
lowed by the invocation of the compiler and then
the 1inker, Toader, and possible analysis tools
as appropriate. Although similar means of com-
bining these tools exist in most environments,
they are not uniformly supported or used through-
out the environment.

In addition, the design plan can be used to en-
force 1ife cycle phase transition requirements.
For example, a requirement specification design
plan can invoke the appropriate tool which would
check the requirement specifications for complete-
ness and consistency prior to entry to the design.
phase. This capability can be used to provide
management better control of a project.

4.1 SSDE Overview

Figure 1 gives a functional overview of the proto-
type SSDE. The core of the SSDE consists of a

SIMULATION
DEVELOPER

DESIGN PLAN
DEVELOPER

user interface which handles user/system commu-
nications, and an SSDE administrator which super-
vises the overall operation of the SSDE. There
are three types of DB files in the system:

1. A design DB which provides generic tem-
plates for various software development
methodologies.

2. A support tool DB which contains the
tools used to develop the target soft-
ware (including, for example, compilers,
editors, and verification and analysis
tools).

3. A target DB consisting of the software
being developed and its documentation.

The system supports three types of users as illus-
trated in Figure 1. First is the target developer
{which in the SSDE is a simulation programmer) who
is responsible for creating the software system
under consideration (i.e., the simulation model).
A second type of user is the design plan devel-

TOOL
DEVELOPER

y /

USER

INTERFACE
SIMULATION
SOFTWARE SDE
DEVELOPMENT ADMINISTRATOR|™
ENVIRONMENT

DESIGN
PLANS

Figure 1: Functianal Overview of the Simulation
Software Development Environment.

422 Richard Reese, Sallie Sheppard

oper who creates and maintains désign plans sup-
porting specific methodologies or sequences of
operdtions. The third user is the support tool
developer who develops and maintains support tools
for use by specific design plans. Each of these
types are described in more detail below.

4.1.1 Simulation Developer

The design plans guide the simulationist through
the software development process in a tutorial
fashion. This is achieved by inveking tools as
specified by the DPs. The simulation programmer
is automatically placed into the appropriate
development state, such as editing, by the govern-
ing DP without the need to explicitly invoke the
editor. These DPs may be organized in a hierar-
chical fashion in order to-quide the user through
the development process.

The decision to place the user into a $pecific
state is determined by the DP. The decision may
be based upon DPs which range in complexity from
very simple to very complex. Should the user
decide that the current state is inappropriate,
commands are available to allow him to redirect
his effort.

Once the.activity of the current state is com-
pleted, the user is placed into the next state as
directed by the DP. When a given DP is complete,
ahother DP is executed as determined by a higher
Tevel DP. This process continues until -the pro-
ject is complete. Throughout the process the
evolving simulation program in its various re-
presentations is stored in the target DB.

4.1.2 Design Plan Developer

The DP developer creates design plans which control
the system. The role of the DP developer +in the
SDE is somewhat analogous to the database admin-
istrator in database environménts. The design
plan developer interacts with the simulation users
and the SSDE for the purposes of defining the data-
base and for creating and maintaining design plans.
The design plan developer creates these DPs and
defines the DB using the various commands and
support tools of the environment. The design plan
developer may even create design plans for the
specific purpose of aiding him in the completion
of his task - namely the development of design
plans. These special purpose design plans may
help in the creation of design plans, the main-
tenance of the DB, or support of other areas.

4.1.3 Support Tool Developer

The support tool developer is responsible for the
development and maintenance of the support tools.
The role of the support tool developer is similar
to the vrole of the simulation programmer in that
both are responsible for creating and maintaining
software, However, a different set of design

plans may be used since different software devel-
opment methodologies will in general be appropriate
for the two kinds of software.

4.2. Design Plans

The design plan is impiemented with a command lan-
guage which is interpreted by the SDE administra-
tor. It consists of a declaration section and a
series of procedures which affect the operations.

[Each procedure may invoke support tools similar
to the manner in which external procedures are
handled in other languages.

By allowing the user to modify these design plans,
the user is given more flexibility in the devel-
opment of procedures for which he is responsible.
Allowing the developer to modify the design plans
recognizes the individuality of all users. 'The
creation of unique design plans is important in
such development phases as testing.

The Tanguage used by the SSDE is a unified one in
that the commands used by the design plans may
also be invoked by the user. The command set,
which is typically Timited to the command level,
may also be used in design plans. A well devel-
oped set of design plans and a complieméntary set
of support tools can guide the user through the
development process. The user will hopefully
have Tittle need to redirect the effort. If it
necessary the user can take a different course of
action. This might include for example, res
execution of a previously terminated 1ife cycle
phase or the examination of completed work.

The design plans support the evolutionary devel-
opment of software. Should a new tool be needed
or a change in the development methodology be
deemed necessary, modification of the design plans
can accommodate these changes in a relatively
straight forward manner.

4.3 Data Base

An interesting aspect of the design plans is the
declaration section. This in effect declares the
schema for the target DB. The declarations are
composed of components which are in turn composed
of elements and other components. Components
roughly correspond to the concept of retords in
Pascal while elements correspond to the parts of
the record. At the same time the decliarations
describe the structure of the target DB. While
the implementation method is DB dependent, com-
ponents correspond to records of a DB and the
elements are the Tine items of the records.

These declarations are dynamically modifiable. An
addition of an item to the declaration will result
in the automatic addition of this item to the
appropriate component.

The data base and the associated declarations pro-
vide an easy method of accessing environmental in-
formation. Access to the DB is at the component
and element level. The design plan developer is
in effect defining the level and type of access to
the DB. In UNIX the common interface is the file.
In this system it is the component and element.

5. SAMPLE TOOL USAGE

The prototype SSDE does not contain a full set of
tools capable of supporting all phases of simula-
tion software development. Sufficient tools have
been included, however, to give the flavor of .
system operation. The coding phase has been empha-
sized in the prototype because of the importance

of this phase and because tools typically used in
coding are well-defined.

Software Development Environment 423

The simulation implementation language supported
by the prototype SSDE is SIMPAS which is a Pascal-
based process-oriented discrete simulation lan-
guage (Bryant 1981). This language was chosen
because although it offers typical simulation
facilities, it is simple and straight forward.

Specific tools available in the prototype include
a SIMPAS compiler, a SIMPAS support editor, a

SIMPAS style assessment tool, and a SIMPAS metric
tool (under development). Since SIMPAS is based

upon Pascal, these tools will work as well on
Pascal programs. The SIMPAS compiler, which is
implemented in Pascal, was obtained from the
University of MWisconsin and was adapted to rum
on a TI 990/12 m1n1computer.

The SIMPAS support editor is screen-oriented and
and 1ncorporates many of the ideas developed in
the GANDALF project (Habermann 1980). The most
useful feature of this editor is its ab111ty to
insert templates (such as those shown b&low in
Table 1) into the simulation program at the dis-

COMMANDS

TEMPLATES

INClude

INCLUDE <name-1> [,<pname-2>1...;

Start Simulation

START SIMULATION(<status>);

Event

EVENT <event-named[<formal parameter list>];
<label part>
<type-part>
{var-part>
{preccedure and function decl part>
BEGIN
<statement-list>
END;

Schedule

SCHEDULE<event-name>[<actual parameters>]
[NAMED <ev_ptr>]
{ NOW }
AT <t1me-expression> H
DELAY <time-~expressicn> |
BEFORE <ev ptr> |
AFTER <ev_ptr> }

Cancel

CANCEL <ev_ptr>

DEStroy

DESTROY <ev_ptr>

DELete

DELETE <ev_ptr>

Reschedule

RESCHEDULE <ev ptr> { AT <time-expressicn |
DELAY <time-expressicn> |
BEFORE <ev_ptr> |
AFTER <ev ptr> !
NOW }

Queue Member

{entity> = QUEUE MEMBER
<attribute-1> : <type-1;
attribute-2> : <type-2;

. .

END;

Queue Cf

<{queue~type> = QUEUE OF <entity>;

Insert

AFTER <e;§tr> ! IN <queued>

INSERT <e_ptr> [{FIRST | LAST | BEFORE <e_ptr>

REmove

REMOVE [THE] [{FIRST | LAST}]
<e_ptr> FROM <queue>

Forall

FORALL <e ptr> IN <queue> [IN reverse] DO
BEGIHN
{statement list>
ENE

Table 1:

SIMPAS Templates.

.

424 . Richard Reese, Sallie Sheppard

cretion of the programmer. The set of templates
currently in use in the support editor are for
SIMPAS and Pascal statements. Sample templates
are shown in Table 1.

To insert the templates into the program the user
positions the cursor at the appropriate point on
the screen and depresses a command key. This
causes a 1ist of template commands to appear at
the bottom of the screen from which the desired
template is selected. The editor then auto-
matically inserts the template at the cuvrsor posi-
tion and prepares to accept user inputs to modify
the template for the specific instance.

Figures 2 and 3 illustrate this template insertion
process. Figure 2 displays the state of the editor
after the cursor has been positioned at the in-
sertion point as indicated by the dollar sign and
after the command key has been depressed. The
command key is implemented in the prototype via a
function key on a TI 911 video terminal. The
depressing of the command key results in the dis-
play of the template commands at the bottom of
the screen. Note that the commands, when entered,
can be abbreviated with only the use of the
capitalized letters in the command name. The
insertion command is entered at the bottom of the
screen as illustrated in Figure 2 with the entry
of the "S" for the schedule conmmand. Figure 3
shows the inserted text after the execution of
this command. The SSDE is now ready to replace’
the <event name> with the specific user input,
along with optional parameters ahd scheduling

information necessary to complete the instruction.

This template insertion method has a number of
advantages. The most obvious one is that the user
need not key-in standard statement sequences.

This avoids unnecessary effort and helps to re-
duce the number of syntax errors. The templates
also assist the programmer should he forget the
exact form or syntax of a specific statement.

These templates can be created by the user and are
not Timited to SIMPAS or Pascal templates. By
modifying the command and template libraries the
user can alter old templates or add new ones.
Table 2 illustrates other template uses. Note
that they are not limited to programming language
statements.

A SIMPAS style assessment tool was included as
part of the support tool DB. A style assessment
tool 1is used to autgmatically quantize the style
of a program. While style assessment tools have
been criticized (Glass 1983), they can be used by
knowledgeable programmers to provide a positive,
albeit Timited, feedback. The style assessment
tool included in the prototype was patterned after
(REES 1982), ‘

A simple metric tool based primarily upon Hal-
stead’s "Software Science" (Halstead 1983) is
being developed to illustrate the use of metrics
in SDEs. The inclusion of metric software in the
SDE allows the metric designer to have access to
information from all phases of the 1ife cycle.

I

WHILE PORT_IS_OPEN DO
- BEGIN
CASE DOCK_NUMBER OF

DOCK_ONE:
"~ BEGIN
$

END;
i DOCK_TWO:
BEGIN

.
.

NS

INClude, Start Si&ulation, Event, Schedule, Cancel, DEStrcy, DElLete,
Reschedule, Queue Member, Queue Of, Insert, REmcve, Ferall, Pregram,
PRocedure, FUncticn, RECord, Begin/end, IF, While, Repeat, CAse, For

Figure 2: Screen As the Schedule Ccmmand is Selected.

Software Developmen} Envirgpment

_

- . \iaa Ty =T Y
.

WHILE PORT_IS_OPEN DO
"BEGIN
CASE DOCK_NUMBER OF

DOCK_ONE:

BEGIN

ﬁCHEDULE&event—name>[<gctqal parameters>]
[NAMED <ev_ptr>] ’
{ NOW |
AT <time-expressicnpy |
DELAY <time-express;cn> |
BEFORE <ev_ptr> |
AFTER <ev_ptr> }

END;

DOGK_THO:
BEGIN

_/

Figure 3: Screen After Completipn of the IQ§ertion Process.

COMMANDS TEMPLATES ‘)
Documentatiop AUTHOR;
DATE CREATED:
DATE LAST UPDATED;
VERSION:
PURPOSE:
INPUTS:
QUTPUTS:
Big Box T~F ----------- w——r—mv—-r-vﬁ~——7
{ i
1 [}
1]
§ [}
i !
|
!]
!]
]
!
""F'--“"'"‘""""'"""W""F'!’"H"W"“'ﬂf‘ —————
Small Box e —r———r
!
f
]
{
|
i
I
]
|
Py o [- Aeal ol ok B |
T T
Linﬁ . o . =t e s o e e Indeiadnd Ebadadel by hadnd dads ol abodenbnd v Aakabndadededed

Yy s T = T

Table 2: Other Possible Templates.

A25

426

Early metric designers usually had to rely on |
either static analysis of the source code or dy-
namic execution traces. Metric tools implemented
within SDEs, however, can monitor the evolution

of software - from the specification stage through

_to maintenance.

6. CONCLUSIONS AND FUTURE RESEARCH

Experimentation with the prototype has established

the basic feasibility and utility of the simula-
tion software development environment. In parti-
cular the prototype SSDE was able to support the
following useful facilities and functions: s
1. A user-friendly interface which can be
«tailored to the specific needs of dif-
ferent users with the construction of
appropriate design plans.

2. The capability to support all phases of
the software development process.

3. An integration of individual existing
tools with newly developed tools to sup-
port specific aspects of the software
development process.

4, Access to this collection of tools with-
out the user being required to know and
understand many of the details of the
tools.

5. Support of md]tip]e target languages
(e.g. SIMPAS and Pascal in the
prototype).

The most- useful implementation concepts explored
in the prototype were the design plans and data-
base usage. A well designed set of DPs can re-
duce the need on the part of the simulationist
to explicitly use the available commands since the
DPs can be designed to invoke the required tools
at the appropriate times. Further research is
needed to establish ‘criteria for determining the
adequacy of a design plan set and in identifying
any inherent limitations of the design plan con-
cept in meeting the needs of the users.

Databases have been used extensively in the pro-
“totype SSDE as repositories of information regard-
ing the evolving simulation program as well as
the support tools and design plans. The feasi-
bility of using available database management
systems in accessing these databases was estab-
Tished in the prototype. The use of a DBMS,
however, does affect the portability of the SSDE.
Additional experimentation is needed relating to
database organization and interface to determine
optimum organization and access methods for spe-
cific information requirements.

The prototype has emphasized the coding phase of
software development. Additional study is needed
to design and develop support tools for other life
cycle phases. Many existing tools can simply be
Zincorporated into tihe SLE.. The prototype provides
a téstbed for this proposed research and other

experimentation in the area of software develop-
ment.

Richard Reese, Sallie Sheppard

REFERENCES

Bourne SR (1978), UNIX Time-Sharing System: The
Unix Shell, The Bell System Technical Journal,
Vol. 57, No. 6 Part 2, pp, 1971-1990.

Bryant RM (1981), SIMPAS User Manual, Computer
Science Departmert and Madison Academic Com-
puting Center, University of Wisconsin-Madison,
Madison WI.

Buxton JN (1980), Requirements for Ada Program-
ming Support Environments, Department of De-
fense, Washington, D.C.

Callender EE (1980), An Overview of Software De-
sign Languages., Proceedings of the 1980 Summer
Computer Simulation Conference, AFIPS Press,
AvTington VA, pp. 251-256.

Clarkson WK (1980), Structured Design and Pro-
gramming for Simulation, Proceedings of the
1980 Summer Computer Simulation Conference,
AFIPS Press, Arlington VA, pp. 257-263.

Glass RL (1983), Letter to the Editor, SIGPLAN
Notices, Vol. 18, No. 7, pp. 11.

Haberman AN (1980), Tools for Software System
Construction, Riddle WE and Fairly RE (eds),
Software Development Tools, Springer Verlag,
Heidelbeig.

Halstead M (1977), Elements of Software Science,
Elsivier, New York.

Mathewson SC (1981), A DRAFT II/SIMON Manual,
Department of Management Science, Imperial
College, London.

Rees, MJ (1982), Automatic Assessment Aids for

Pascal Programs, SIGPLAN Notices, Vol. 17,
No. 10, pp. 33-42.

Reese RM (1983), A Language Directed Software
Development Environment, PhD Dissertation,
Texas A& University, College Station TX.

Sheppard SV, Phillips DT, Young RE (1982), The
Design and Implementation of a Microprocessor-
Based Distributed Digital Simulation System,
NSF Grant No. ECS-8215550.

Sheppard SV (1983}, Applying Software Engineering
‘to Simulation, Simulation, Vol. 40, No. 1,
pp. 13-19. -

Standridge CR (1981), Using the Simulation Data
Language (SDL), Simulation, Vol. 37, No. 3,
. pp. 73-81.

Teitelman W, Masinter L (1981), The Interlisp
Programming Environment, Computer, Vol. 14,
No. 4, pp. 25-33.

Wasserman AI (1981), Toward Integrated Software
Development Environments., Ed. Wasserman A.I.,
Tutorial: Software Development Environments,
IEEE, New York, pp. 15-35.

Wyatt DL, Sheppard SV, Young RE (1983), An Exper-
iment in Microprocessor-Based Distributed
Digital Simulation, Proceedings of the 1983
Winter Simulation Conference.

