Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

409

A DEVELOPMENT METHODOLOGY APPLIED TO A RADAR SYSTEM SIMULATION

Jane Harmon, Jay Landreth, Donald Lausch,
Padman Nagenthiram, PhD., and Henry Ramirez

ITT Gilfillan
7821 Orion Avenue
Van Nuys, California 91409

As systems to be simulated grow larger and more complex and the cost of
software escalates the need for cost and time efficient development

methodologies become critical.

This paper describes such a methodology.

The methodology is based on standard modern software practices such as

top-down design and structured programming.

This development methodology

has been applied to a radar system simulation which will eventually
grow into an air defense simulation employing a surveillance net, and
deployed weapons. The objective of the simulation is to provide a computer
design tool to aid in the synthesis and parameterization of modern air

defense systems.

The simulation embodies computational algorithms as well as the contentions
for resources among the various elements of the system.

The radar system simulation is

implemented in the SIMSCRIPT simulation

program language. It is documented in the Software Design and Documentation
Language (SDDL) which 1is a machine processed and machine reproducible

pseudo code.

1. BACKGROUND

Many systems (i.e., air defense systems,
computer systems, communication systems, banking
systems, etc.), are comprised of a number of
asynchronous parallel distributed operations.
The total response of such a system is, by
nature, complex and probabilistic. Further-
more, the response of each operation varies in
relation to the input events. The performance
of these systems is usually considered a prime
candidate for computer simulation. Conventional
simulation approaches do not necessarily provide
a means of adequately evaluating the performance
of such a complex system. This paper describes
the evolution of a discrete simuiation for a
radar system that quantifies the system perform-

ance. The long term project goal is to simulate
an air defense system.

A radar system consists of the activities of
search, detection, track, and resource manage-
ment as depicted in Figure 1. The input con-
sists of reflected signals from targets and the
environment. Radar outputs are transmitted
signals and target data such as position and
velocity. Under loaded conditions, all opera-
tions are being performed simultaneously, and,

“in many cases, there 1is contention for the

resources of transmitter power, memory, and bus
traffic. In this situation, the operational
environment can influence the performance of the
system. System performance is based not only
upon the errors fintrinsic to the computational
algorithms, but also upon the resource utiliza-
tion by the various elements of the system. The
total system response is therefore dynamic, that
is, varying with the input as the demand for
resources changes.

The basic goal of this simulation is to provide
a computer design tool to aid radar system
synthesis and parameterization. This design
tool allows for analysis and prediction of
results of radar surveillance (search, detection
and tracking) of hostile aircraft employing
specific equipment, tactics, and countermeasures
in a real world environment where the resources
of the radar are controlled within finite
constraints.

The radar simulation has been implemented with
the SIMSCRIPT simulation program language
(Russell 1983). SIMSCRIPT provides a ready-
buiit executive program that allows for the
simulation of systems employing concurrent

CH1953-9/83/0000-0409 $01.00 © 1983 IEEE

410 Jane Harmon, Jay Landreth, Donald Lausch, Padman Nagenthiram, Henry Ramirez

3581-1

Figure 1:

parallel and serial processing at many levels of
processing. The simulation executes on a large
general purpose mainframe computer and provides
real time emulation by means of a simulated
clock and event gqueues.

Measures of effectiveness for a typical radar
system are usually denoted as Measures of Merit
(MOMs). A tree structure can be used to repre-
sent intradependency of the MOMs or conditional
probabilities as depicted in Figure 2. This
tree 1s based on measures relevant to the major
processes within the system. In this case the
first level is the probability of surveillance
which represents the combined effectiveness of
the search and tracking processes. The prob-
ability of track is the conditional probability
of track initiation and track maintenance.

Some of the newer radar concepts dictate an
adaptive application of the radar's resources
(time, energy and processing capability). Under
these conditions, the conditional probabilities
are time dependent because the load or threat is
dynamic. In many cases the load is inundating,
hence, it is necessary to conserve the radar
resources. At this point, the meastres of merit

become conditioned wupon ener and time
utilization. P 9 '

PROBABILITY OF
SURVEILLANCE

]

PROBABILITY
OF TRACK

PROBABILITY
Of DETECTION

tl

PROBABILITY OF
TRACK INITIATION

‘PROBABILITY OF
TRACK MAINTENANCE

i
3581-2

Figure 2: Radar Performance Tree

RESOURCE MANAGEMENT

Radar Activities

2. DEVELOPMENT METHODOLOGY

The methodology adopted. follows standard modern
software practices such as top-down design ana
structured programming. In addition, some new
and unique features have been jncorporated.
This paper will emphasize these features and
demonstrate that they are equally applicable to
other similarly large and complex simulation
models.

The simulation 1life cycle for the radar system
simulation model is shown in Figure 3. The Tife
cycle begins with a definition phase followed
successively by the Software Design, Code and
Unit Test, and Integration phase before the
simulation finally becomes operational. It is
envisaged that subsequent versions of the radar
system model, as it grows into an: Air Defense
Simulation, will also follow this Tife cycle.

MANAGEMENT SEEKS
IMPROVEMENT

_——TIME—__
' 4

IMPROYVED SYSTEM
DELIVERED FOR USE

A

OPERATION

SOFTWARE
DESIGN

CODE AND
UNIT TEST

3581-3

Figure 3: The Simulation-Life Cycle

Radar System Simulation 411

3. DEFINITION Modification and growth of the model is allowed
— . “~- for by use of the function as a Software __
3.1 The Functional Model . Replaceable Unit. It is also possible for these

. . . functions to differ in complexity, thus allowing
The starting point for the simulation 1is a for a combination of levels of simulation detail
functional description of the system which in the same configuration of the model.
states the system requirements. Nominally, the
desired inputs, outputs and capabilities are Levels of simulation detail are handled by
presented to the user group and development further subdividing the function into several -
group. It is this document that derives the subfunctional Tlevels. In general, the more
program performance specification. detailed the simulation requirements the more
. o . subfunctional 1levels are required. For the
Detailed specifications are set forth in the radar system model, three functional levels are
program performance specification. These speci- considered adequate. These are termed function,
fications delineate the functions, subfunctions subfunction and process.
and processes as well as the respective inter-
faces required to fulfill the functional In the example of the radar system a Resource
requivements at the system level. Functional Management functional decomposition is depicted
specifications include both logical and mathe- in Figure 5 where the following subfunctional
matical descriptions as well as limitations and activities are simulated.
constraints.
Search
For the example of a radar system, the Allocations: Generate the desired search
functional block diagram and the Scenario driver radar action queue.
are depicted in Figure 4. These functions have . ’
the following overall requirements. Track
Allocations: Generate the desired track
Scenario: Generate the positional data action queue.

for targets and environment.
: Scheduling: Merge search and track radar
action queues into a final

schedule radar action queue.

Sensor: Generate signal data for
targets and the environment
and simulate the radar trans-

mitter, antenna and receiver. 3.2 The Hardware Model Architecture

Search: Simuiate the activities of
jnitial target detection and After each function has been detailed to the
position estimation as per- level required for simulation, a hardware model
formed in the radar signal and architecture is determined. The hardware model
data processing hardware. architecture is designed to meet the functional
Track: Simulate the activities of requirements of the radar system given a set of
target detection and position available hardware processors using both direct
estimation after the initial and bus communication. Figure 6 shows an
contact. In addition, per- example of a radar system whose functions, sub-
form the track process in the functions and processes have been assigned to
radar signal and data specific processors, using direct and bus
processing hardware. communication, to form a hardware model
architecture.
Resource
Management: Optimize the functions of The available processor types for the hardware
search and track within the model architecture consisted of Special Purpose
finite constraints of time and Hardware (SPH), Radar Programmable Module (RPM),
energy. General Purpose Machine (GPM), and High Speed
SEARCH CONTACT REPORTS
FUNCTION
SEAACH
Reronis
REQUETS SENTRCLs
RS o

ENVIRONMENT TRACK
REPORTS CONTROLS —— B
TRACK

e /
AEPORTS R
TRACK , ALLOCATIONS
FUNCTION

l SCHEDULING |——

TRACK
ALLOCATIONS

35681-4

SENSOR CONTROLS

3581-5
M

Figure 4: Function Model Of The Radar System And Figure 5: Resource Management Decomposition
Scenario Driver Into Subfunctions

412 Jane Harmon, Jay Landreth, Donald Lausch, Padman Nagenthiram, Henry Ramirez

Coprocessor (HSC) units. The Sensor Function
was assigned to a single SPH. The Search
Function was assigned to a single RPM. The
signal processing subfunction of the Track
Function was assigned to a single RPM, while the
target processing subfunction of the same
function was assigned toc a GPM. Furthermore,
the correlation and association process and the
state .estimation process of the Track Function
were eath assigned to HSCs. The resource
management search allocation and track ailoca-
tion subfunctions were assigned to the same GPM
while the scheduling subfunction was assigned to
another GPM.

1 e —
RESOURCE
MANAGEMENT
" -l ALLOCATIONS
SUBFUNCTIONS

GPM1

SEARCH
FUNCTION

J| RPM

" RESOURCE
MANAGEMENT
SCHEDULING
SUBFUNCTION

GpM2

—

RADAR FunGTION
ENVIRONMENT

i SPH

LOCAL BUS

1 TRACK TARGET
PROCESSING .
SUBFUNCTION —

GPM

DATA PROCESSOR SYSTEM BUS

TRACK SIGNAL,
PROCESSING
SUBFUNCTION |,

RPM

RESIDENT
BUS

COARELATION STATE

AND ESTIMATION
3 ASSOCIATION PROCESS
S PROCESS
] HsCt HsC2

‘Figure 6: Hardware Model Architecture Of The
Radar System

An SPH unit can support multiple data/muitiple
operation high speed digital and analog require-
ments. The RPM is a digital bit oriented micro-
processor capable of multiple instruction/
single data operations per clock cycle. The GPM
is a digital word "oriented wmicroprocessor
capable of single instruction/single data
general purpose operations per clock cycle. The
HSC is an arithmetic array 'processing unit
capable of high speed computations and is used
as a support unit to the GPMs.

The communication architecture chosen for
interfacing the radar system processing units,
in the example, are direct channel and bus hard-
ware. Direct channels are used between the RPMs
and the SPH. The RPMs communicate with the GPMs
via. a system bus. The GPMs communicate with
each other via local bus, and a resident bus is
used to interface the support coprocessors to a
GPM. Communication architecture between units
was determined from the unit interface require-
ments in which the speed, frequency, anhd quan-
tity of data pertaining to the transferring of
information from one unit fo the next was
specified. Multiple buses are used in configur-

___ing the communication architecture to handle

data transfers at different Tevels of system
processing.

‘process in which the high level

message communication architecture,

A more complex model is not precluded by the
specific hardware model shown in Figure 6. For
instance, it is possible to add more micro-
processors, coprocessors, read-only-memory, and
random-access-memory to a microprocessor's
resident bus. Just as in the case .of the
functional model, the modular nature of the
processing hardware architecture facilitates the
modeling of several different processing
hardware configurations.

Configuring the hardware model architecture is
an interactive process based upon Static
throughput analysis. The reconfigurations and
corresponding analysis are continued until the
hardware architecture is found which is a suit-
able candidate for simulation analysis. The
simulation will be used to dynamicaily analyze
the radar system model not only for overall
performance but also for individual processing
unit throughput and bus 1loading. Simulation
results may show that additional changes are
required to the hardware model ranging from the
reassignment of the functional processes to the

use of different or additional types of
processors and buses.
4, SOFTWARE DESIGN ' a

This phase 1nitiates the construction of a
computer model from the conceptual model
completed in the definition phase. The design

phase is achieved in two stages, top-level

design and detailed design. The top-level
design stage is mainly a visual definition
software
structure of the computer model is developed.
In the detailed design stage the simulation
model is described in pseudo code. .

4.1 Top-LeveTl Design

The software design structure is dinitiated by
mapping all the processing units of the hardware
model along with their interfaces into a node-
Following
this procedure transforms the hardware model
shown in Figure 6 to the top-level software
structural model shown in Figure 7. Each of the
processing units SPH, RPM, GPM, HSC and the
Scenario driver is transformed into a master
node together with associated processing
elemeénts such as subnodes and tasks (not shown
in Figure 7). Communication between the
processing units is simulated by messages which
travel between master nodes. B

A1l master nodes were developed for operation in
a similar manner. Basically, a master node must
be able to receive messages, determine what
action should be taken on that message and
initiate that action. If the needed action, on
a message, cannot be taken at once, the master
node must have the capability to store the
message until the necessary action can be
taken. A master node handles many different
messages. But, all these messages are. one of
two types; either external, that is from some
other master node or internal, that is from one
of the master node's subnodes. The action the
master node must take in response to receiving a

message is to either send it to the appropriate

subnode or sent it to another master mode. When

Radar System Simulation : 413

DATA PROCESSOR SYSTEM BUS

RESOURCE -
MANAGEMENT
GPM2

MASTER NODE

MASTER NODE

SENSOR

SCENARIO
MASTER NODE

SPH
MASTER NODE

PROCESSING

MESSAGE FLOWPATHS RPM
MASTER NODE,

~ ———— DIRECT

& A N

wn

© VIA BUS
ey

D
PROCESSOR
SYSTEM BUS

PROCESSOR
SYSTEM BUS

RESOURCE
MANAGEMENT

GPM1
MASTER NODE

SPEED
COPROCESSOR
HSC1
MASTER NODE,

wCcw roor

PROCESSING
GP!

COPROCESSOR
HSC2
MASTER NODE,

Figure 7: Top-Level Software Structural Model Of The Radar System And Scenario Driver

sending a message to another master node the
master node must be able to simulate the use of
a shared communication bus when appropriate.
Thus, a master node functions as a message
handler and a subnode controller.

The actual duties of a processing unit in
receiving 1its 1input data and performing the
necessary processing to produce the required
output data is reflected by the flow of data in
the messages through the master nodes, support-
ing subnodes and tasks. The message data is
comprised of the actual interface data along
with the message type, master node origin,
master node destination, and priority
characteristics.

In the radar system example, many elements
operate at the same time, therefore, numerous
messages are active in the model simul-
taneously. The requirements stipulate that the
conceptual radar be capable of multiprocessing
and multitasking of the various radar activities
occurring in parallel. This translates into a
software design structure 1in which various
messages can be simultaneously transmitted ana
processed by different master nodes, supporting
subnodes and tasks in the architecture. In
addition, the hardware Tlimitations of bus
message transmission, when multiple master nodes
are competing for bus availability, further
complicate the structure. What is required is a
time sequence coordinator embodied in a timing
executive to ensure that the timing aspects of
modeled architecture are compatible with the
radar model. The SIMSCRIPT Programming
Language, with 1its data structure, built-in
timing executive and other features, is a
suitable candidate to translate these
requirements to program code.

The SIMSCRIPT timing executive keeps track of
the events occurring throughout the simulation.
This timing routine allows for the emulation of
real time by use of a simulation time clock.
Each initiated process in the simulation has a
start time and a finish time which is kept rela-
tive to the simulation clock. The timing
routine references the event set where all the
tasks to be performed are filed in a time and
priority ordered sequence.

The timing routine will search until it finds
the event with the earliest start time, the
event is removed from the event set and the
simulated time clock is then advanced. If two
or more events are scheduled to occur at the
same time, they will be executed one after the
other, however, the simulated time clock will
not be advanced between the, first and last

event. Hence, in simulated time the events
occur simultaneously.

The SIMSCRIPT data structure is illustrated by
examining the SIMSCRIPT structure developed for
the Resource Management GPM1 as shown in
Figure 8. This structure is similar for all
master nodes in the simulation. All master
nodes are modeled as SIMSCRIPT processes.

The process can be initiated by other elements
of the simulation and its the process initiation
and the time it takes to run are both controiled
by the SIMSCRIPT timing routine. The subnodes
under a master node are also modeled as
processes so as to simulate the time taken by
them when the tasks are performed.

The Search Allocation and Track Allocation
subfunctions assigned to the Resource Management
GPM1 consist of a total of four processes. Each
process is modeled as a subnode with its
associated SIMSCRIPT routine (task).

414 Jane Harmon, Jay
MESSAGE OUTPUT QUEUE MESSAGE QUTPUT QUEUE
FOR'L.OCAL BUS FOR SYSTEM BUS
\)‘9
<
{9)
VO
fourprur . = OUTPUT
JCONTROLLER 0, CONTROLLER]J,
&
E 2 2 R
S
S
&
MESSAGE INPUT QUEUE S
RESOURCE \
MANAGEMENT OCAL 8US
GPM1
™ M MASTER NODE
§ susNoDE
R, ROUTINE
3
SEARCH TRACK
SEARCH ‘BEAM CONTACT DWELL
MANAGEMENT CONTACT CROSSGATING TEMPLATE
CORRELATION FORMATION
S S E] £
«
3
-
8 "
] R 8 B B
Figure 8: SIMSCRIPT Structure For Resource

Management GPM1

Every master node has a subnode for every
hardware bus that a master node communicates
with. For dinstance, the Resource Management
GPM1 master node has two such Subnodes, one to
communicate with the Tlocal bus and one to
communicate with the system bus. These subnodes
are termed output controller! subnodes and their
purpose is to control the output of messages
from that master node to other master nodes over
the specified bus. Each i output controller
subnode has a SIMSCRIPT set (queue) to store
messages 'waiting to be output over that bus.
Hardware communication buses are modeled by use
of the SIMSCRIPT element, resource. In
SIMSCRIPT, processes compete for the resources
needed to complete their tasks. In the case of
a bus, many master nodes may 'be connected to and
use the same bus to send. messages to other
master nodes. Only one master node can use the
bus at a"time but more than one master node may
need it at that time. When' this happens, each
master node must wait its turn to use the bus
.resource and thereby compléte its task. The
SIMCRIPT timing executive automatically keeps
track of which SIMSCRIPT elements are being used
and also keeps track of a queue of waiting
requests ‘on that resource. As that resource or,
in this. case, bus becomes free the SIMSCRIPT
timing executive begins processing the next
waiting-ﬁgquest.

Every master node contains jan input queue in
which messages it must handie are stored. This
input queue 1is modeled using the SIMSCRIPT
element, set. In SIMSCRIPT, the set is a linked
1ist. The linkage is done dutomatically by the
system whenever an entity belonging to a set is
filed in the set. A member of a sét can also be
removed from a set, again thHe linkage modifica-
tion is performed automatically by the system.
When a message is sent to a message node, in
SIMSCRIPT terms, it is filed or put into the

input set for that master node and that master --

node is activated. This procedure is the same
for external messages (from -other master nodes.)

‘

Landreth, Donald Lausch, Padman Nagenthiram, Henry Ramirez

or internal messages (from subnodes -of that
master node). When the master node is acti-
vated, the master node searches its input set
for any, and all, messages upon which action can
be taken. Messages for subnodes which are not
busy are sent to that subnode and the subnode is
flagged as busy.

Once routing of the input message to the proper
subnode has been accomplished, the master node
directs the subnode to comfence processing 0N
the message. The subnode determines which of
its tasks are required to respond to the message
and allocates the duties among those tasks (in
SIMSCRIPT tasks are modelled as routines). In
this manner, the tasks perform the computational
processing to produce data results for the
output message. The subnode subsequently
utilizes these results to form a response output
message and delegates the responsibility of
outputting the message to the master node. The
master node determines if the transmission of
this output message requires any one of the
three Bus communications hardware: Tlocal,
system, or resident bus. If a bus is reguired,
the master node must request this. bus, use the
bus for the transmission of the message when the
resource becomes available and relinquish its
use when transmission has been completed. If a
bus is not required, the master node ocutputs the
message through a non-bus direct channel to the
destination master node. This cyclic procedure
of message handling, processing, and outputting
is repeated upon the receipt of each input
message by any of the master nhodes in the radar
system and is illustrated in Figure 9.

SUBNODE
THE INPUT MESSAGE IS RECEIVED BY THE MASTER
NODE {(FROM ANOTHER MASTER NODE }

@ THE MASTER NODE HANDLES THE MESSAGE BY
DIRECTING THE PROPER SUBNODE TO
COMMENCE PROCESSING

THE SUBNODE ALLOCATES THE COMPUTATIONAL
PROCESSING RESPONSIBILITY TO A TASK

TASK

THE SUBNODE FORMS AN QUTPUT RESPONSE
MESSAGE FROM THE COMPUTED TASK RESULT

THE SUBNODE DELEGATES THE RESPONSIBILITY OF
QUTPUTTING THE MESSAGE TO THE MASTER NODE ...

7 (6) THE MASTER NODE SENDS THE OUTPUT MESSAGE TO
BN ANOTHER MASTER NODE THROUGH BUS
& HARDWARE OR DIRECT CHANNEL

Figuré 9: Message Handling And Processing

-

Radar System Simulation

The capability for expansion and modification of
the software structure 1is enhanced by its
modular design. Future expansion can be easily
accommodated by the addition or deletion of
master nodes, subnodes, tasks, messages and
resources. Furthermore, the ability to
introduce new algorithms into the radar system
could be easily accomplished by replacement of
the appropriate master nodes, subnodes, etc.,
with the corresponding modified master node,
subnodes, etc.

This communication architecture structure
developed for the vradar system model is
generally applicable to two categories of simu-

lation. The first category involves a
simulation where the functional model 1is
composed of hardware elements which interface

through hardware fixtures in a time critical
fashion. For example, in a Generalized Computer
. Communication Network (Russell 1983) the various
hardware elements in a typical computer system
(i.e., terminals, CPUs, card readers, printers,
etc.) were modeiled in terms of the master node,
subnode, task concept with bus and non-bus
communication lines to obtain the throughput of
jobs in wvarious system configurations. The
second category involves a simulation based upon
a non-hardware model or where hardware
considerations are of no importance. For
example, in the case of the Shipboard Combat
System Simulation (SCSS) (Pohoski, Pack, and
Mensh 1981) where the various "elements in_a
combat system" (i.e., weapon systems, C°,
TEWA, etc.) were modeled as purely non-hardware
elements in the architecture, the purpose was to
gauge the effectiveness of the combat system
under various scenario environments.

A typical simulation run of the radar system
model encompasses the timing considerations of
the first category ana the computational
algorithms of the second category. FHowever,
with easy modification the model could be
exercised either as a hardware model with no

computational algorithms or as a non-hardware
model. When the model is exercised as a non-
hardware model, the software architecture

becomes a mapping of the functional model shown
in Figure 4, rather than the hardware model
architecture shown in Figure 6.

4.2 Detailed Design

The use of psuedo code in the detailed design
stage serves as a bridge between the simulation
analyst, software engineer, and the customer.
Additionally, it serves as a design tool for the
software engineer. Machine processed and
machine reproducible pseudo code (Software
Design and Development Language, SDDL) (Kleine
1977) was used because of its desirable aspects
of easy updating and modification. In the case
of a large and complex simulation with a staff
of many software engineers, SODL can be written
by each software engineer for his individual
portion and later all the SDDL can be combined
to document the entire program.

The SDDL format developed by the software
engineers in development of this simulation was
of two Tevels: a functional description portion
and a program structure portion. The functional

415

description is primarily used for communication
between the software engineers and the non-

The program structure portion of the SDDL aids
the software engineer in development of the
program and in the communication between the
software engineers about the more detailed
aspects of the simulation design.

Each software engineer first
functional description portion
document for all master nodes, subnodes and
tasks under his responsibility. At this point
the interfaces between elements of the simula-
tion can be checked and finalized by the
software engineering staff members.

completes the
of the SDDL

The second portion of the SDDL document is the.
first step in development of the actual program
code. The structure of SDDL allows the software
engineers to specify and document the structure
of the SIMSCRIPT code prior to actual code via
the program structure portion of SDDL. This use
of SDDL eliminates the need for hand drawn flow-
charts which vrequire considerable time to
construct and are inconvenient to update and
change as a program develops.

When a software engineer is constructing SDDL,
certain key words are defined by the SDDL
processor to control the processing of this SDDL
input file. The SDDL processor will process the
input file under the control of these key word
statements by providing program structure with
various indentation levels. The SDDL processor
produces cross-reference 1listings on items
specified. Some items useful for cross-
reference in this simulation are global variable
names, process names and message names. When
all the SODL for the program has been combined,
the cross-reference feature aids in review of
the software engineer's design, name, and
interface verification.

5. CODE AND UNIT TEST

During the Code and Unit Test Phase, the master
nodes, subnodes and routines are coded, compiled
and individually tested. With the use of pseudo
code there is no clear distinction between the
detailed design in SODL and the beginning of
code. The SIMSCRIPT Code naturally evolves as
the SDDL gets more detailed. As each function
is coded it is tested separately in terms of its
subnodes.

At the same time the overall structure of the
computer program is built and tested in terms of
the master nodes and message flow with program
stubs in place of the developing subnodes.
Separate software development of the functional
algorithms and the system architecture in this
manner facilitates development, test and most
importantly, integration. Also, the completed
overall structural model without the algorithms
is useful as a model of the radar system
processing hardware.

The Basic Structure of a SIMSCRIPT program
consists of three primary elements:

1) A preamble, giving a static predescrip-
tion of each modeling element (e.g.,
processes, resources, data structures).

—=—-programming members of the simulation staff.

416 Jane Harmon, Jay Landreth, Donald Lausch, Padman Nagenthiram, Henry Ramirez

2) A main program where execution begins.

3) A process routine for each process
declared in the Preamble.

As each software engineer develops the
functional algorithmic code he writes a separate
version of the preamble as needed for his
sections of code. These separate preambles will
later be combined into one final preamble. Each
subnode or routine that a software engineer
codes is kept separate from the other subnodes
and routines so that a change to one will not
affect compilation of the others. SIMSCRIPT has
the feature that sections of coae may be
separately compiled so that if a change is made
in one section of code it is necessary only to
recompile that section using the already
compiled preambie. Development time and
computer costs are greatly reduced by this
feature. When a routine compiles cleanly with
the preamble, the software engineer attempts to
test it in this isolated subnoae condition.

Testing at this phase usually involves writing

an input driver to provide appropriate data for *

the routine under test and writing a print
routine to output results. This input driver
can be activated to provide data periodically as
needed to test the routine. Input drivers are
retained for inclusion in the completed simula-
tion. This allows portions of the simulation to
be exercised without the need to run the full
simulation.

6. INTEGRATION

In this phase the program stubs in the overall
structural model are replaced systematically by
the subnodes and routines developed separately.
The sequence of integration follows the func-
tional flow of activities through the radar
system. This methodology of separate develop-
ment of the overall structural model and the
processing modules and subsequent integration in
a systematic manner.proved to be extremely time
efficient.

In addition to the input drivers and print
routines developed during the Code and Unit Test
phase, testing during integration is enhanced by.
built-in-test facilities at the subprogram
Tevel, These facilities include functional
tests which are invoked at different subfunc-
tional levels. Since these functional tests are

independent of the algorithms they can be reused
during program growth and modification.

The debug features of SIMSCRIPT facilitate the
construction of these built-in-test features.
For instance, the SNARP.R routine was utilized
as a means for outputting message fiow informa-
tion indicating the functional flow of activi-
ties in the simulation. This user supplied
debug routine 1is automatically called by the
SIMSCRIPT executive whenever a run time execu-
tion error is detected allowing the user to
examine message flow status (i.e., message data,
message origin, message destination, etc.) at’
error time.

Additional use .of SIMSCRIPT debug features
inciuded monitored variables and BETWEEN.V
language constructs. The monitored variabies
provision allows the user to specify important
radar parameter variables whose values can be
automatically output (without the need for
numerous print statements) whenever they are
used in a computational equation during program
execution. As a further debug enhancement, the
BETWEEN.V represents a user specified routine
which is automatically called at each radar
system timed activity. This operation produces
a time history of significant radar events.

7. OPERATION

Figure 10 shows the operational configuration
for running the simulation program. The user
communicates with this program via a CRT termi-
nal through User Friendly Interface (UFI)
software. OQutputs from a simulation run may be
directed to the user's CRT terminal or output to
a printer and/or plotter. Graphical output data
is currently being transported via tape and is

GRAPHICS
DISPLAY

SIMULATION

SOFTWARE
FOR . PROGRAM
ueL {18M)

. {18M)

GRAPHICS
DATA

i PRINTER/
PLOTTER

/-/_/

3581-10}

GRAPHICS GRAPHICS | ...
SOFTWARE. DISPLAY
ROUTINES . (PLASMA
{NovA) PANEL)

. Figure 10: Operationadl Configuration Of The.Simulation Program

— computer,

Radar System Simulation

displayed on a flat panel plasma display using
graphics software routines on a Nova wmini-
However, as indicated in Figure 10,
plans are underway to directly link a graphics
display to the IBM mainframe.

The UFI software enables a user who has very
little computer knowledge to interact with the
simuiation program with the minimum of "learning
overhead®. The UFI employed is a set of tree-
structured menus. Via this UFI the user is able
to enter/modify input data, select data for
output, run the simulation and perform analysis
on the output data.

Analysis outputs from the simulation as it is
currently implemented will be presented at the
conference. There are either statistical
summaries which have an alphanumeric format or
plots displayed on the graphic display.

8. FUTURE PLANS

Only a Tlimited version of the radar system
simulation is currently operational. More
detailed versions to aid in the system design of
particular radar systems are being currently
implemented. The methodology described in this
paper allows the model to be very rapidly
configured to simulate most modern radar systems.

417

The radar system model has been developed as the
surveillance portion of an Air Defense System.

“TThe Air Defense System model envisaged includes™—

the entire area of seabased or landbased theater
of operations employing a surveillance net and
deployed weapons.

REFERENCES

Kleine H (1977), Software design and
documentation language, Technical Report No.
77-24, Jdet Propulsion Laboratories, NASA,
Pasadena, California

Pohoski MW, Pack DK, Mensh DR (1981), The ship
combat system simulation (SCSS), simuTation
design description and simulation user
information, phase 4, Naval Oceans Systems
Center, San Diego, California; Naval Weapons -
Center, China Lake, California; and Naval
Surface Weapons Center, White Oak
Laboratory, Silver Springs, Maryland.

Russell EC (1983), Building Simulation Models
with SIMSCRIPT 1I1.5, CACI, Incorporated-
Federal, Los Angeles, California

Russell EC (1983), CACI Network II.5 TM, a
Computer and Communications Network

Simulator, CACI, Incorporated-Federal,
Los Angeles, California

