Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J, Banks, B. Schmeiser (eds.)

363

CODESIM: A COMPACT DISCRETE EVENT SIMULATOR

Lawrence L. Rose
Battelle
Columbus Laboratories
505 King Avenue
Columbus, Ohjo 43201

CODESIM is a compact software faci]ity] that supports discrete event simulation
modeling. Written in Fortran, the CODESIM routines enable facile model construc-
tion with a maximum of modeler independence. CODESIM requires no inputs, handles
queuing without buffer movement, provides built-in trace control, and permits
arbitrary user naming and typing of entity attributes. Statistical routines for
data collection and reporting are provided by the CODESIM software--all outputs
are in the user domain, as are additional model input parameters, etc. Thus,
CODESIM represents a no-frills tool for discrete event simulation. Its advantages
include a free programmer structure, speed, size, interactive use, and potential
for both machine and Tanguage portability.

1. INTRODUCTION

The development of CODESIM was motivated by two
major factors: dinteractive modeling and program-
mer independence. Modeling flexibility (e.g.,
user inputs, dynamic trace and report selection,
variable modification, and stopping criteria)
cannot be provided with batch systems. Yet the
traditional discrete event Tanguages such as

GASP (Pritsker 1975), SLAM (Pritsker and Pegden
1979), and SIMSCRIPT (Kiviat et al 1973) were
developed for the batch mode; they represent
large, sophisticated software packages. Feasible
interactive modeling mandates compact, efficient
software; CODESIM was designed and implemented in
a compact (60K) and efficient manner.

The second concern of programmer independence
stems from the understanding that large scale
discrete event simulations are large software
packages that can best be implemented by non-
neophyte programmers. As each programmer has his
own style, etc. and Tanguage capabilities, the
CODESIM philosophy is to build upon these rather
than to impose a heavy environment with requisite
data structures, naming conventions, formats,
etc. The CODESIM interface is minimal, in an
effort to make the package as easy to use as
possible.

The result of this research is the CODESIM soft-
ware facility: a machine-independent set of
Fortran routines to control and support inter-

active discrete event simulation. Its straight-
forward pointer-based implementation enables
facile conversion to other languages such as PL/I
or PASCAL. This paper outlines the overall
structure of CODESIM and illustrates its use by
example of a telephone model.

2. CODESIM

CODESIM was designed as a minimal, no-frills,
package to support the essentials for discrete
event modeling. As such, it comprises both entity
control and statistical support routines with an
interface to the user model. Figure 1 illustrates
the 10 major components of CODESIM which serve as
a noninvasive simulation environment for the
modeler.

The CONTROL software is the CODESIM main program
--it handles the Future Events Queue (FEQ), ensur-
ing that time advances in a forward-only manner,
and passing control to the user MODEL routine for
the handling of each simulation event. A null
pointer (i.e., empty FEQ) results in a normal
halt; values outside the available space domain
result in an erroneous halt with appropriate
message.

Implicit to the CODESIM design is the tenet that
the user need not learn all about the intricacies
of the system internals in order to effectively

use the package. CODESIM handles attribute space

1. CODESIM is a proprietary software package of Battelle's Columbus Laboratories. Further information
regarding its availability and use can be obtained by contacting the author.

CH1953-9/83/0000-0363 $01.00 © 1983 IEEE



364

Lawrence L. Rose

} CONTROL
_ =y
J ! MODEL ! :
i 1 ____‘"--_—_._.:‘ ]

. w CREATE | " | e STATSI
& KILL : . b © e STATSD
o ADDQ ‘ ; . & STATSR
o DELQ 1 k ' & CLEAR
. o TRACE

i

:

l

SCHED | 1
X 1

i

¢

!

1

i

-

Event

Routines

I
|
!
1
i
1

Figure 1:

for the modeler, storing the event time, event
code, entity 1d, entity predecessor, entity suc-
cessor, and entity queuwng't1me of each active
entity. The modeler is .at liberty to define as
many additional attributes as desired, based upon
the active entity pointer.

The user-written MODEL routine acts as the con~
“trol buffer between CODESIM and the User-written
Event Routines. Within MODEL the modeler uses
the event code of the active entity to determine
appropriate évent routine invocation, incTuding
simulation imitialization and "interactive report-
handling.

When an Event Routine is invoked the CODESIM
entity control routines come into play. The
modeler may KILL the entity when its role in the
simulation is complete. This will update the FEQ
and add the entity to the free storage pool.
may otherwisé SCHEDule this entity for a success-
jve évent, or ADDQ this entity to a particular
queue. The CREATE module enables injtial space
allocation for a new entity, while DELQ enables
the head of a queue to be deleted.

Further simylation support is provided in the
statistical area: STATSI and STATSD derive time-
independent and t1me~dependent statistics respec-
tively. STATSR returns the min; max, current,
mean, standard deviation, and observations for
.any given statistical variables to the modeler
routine for report deneration. CODESIM provides
an automatic statistical collectien of queue
usage, i1f.so desired by the modeler; regarding
‘both queue 1engths and entity times enqueued.

It is important to note that I/0 is almost
entirely removed from the CODESIM software. The
user may alter the CODESIM default values if so
desired, but all input is modeler-handled. On
the output side, the CODESIM trace of events is
output (on the crt and a backup file for post-

One

CODESIM Software Components

[

mortem printout) if the modeler turns the CODESIM
trace variables on. Statistical reports are geh-
erated by the .modeler~-CODESIM will derive and
return statisties but the modeler must output
them and provide Tabel identification.

3. THE USER MODEL

Subroutine MODEL 1is written by the modeler to con-
trol the simulation and to interface with CODESIM.
The very first time MODEL is called the FEQ is
empty, and all CODESIM variables are at their
default values. In this case MODEL must perform
whatever initialization is desired, to include:

1. Any alterations of CODESIM defaults,
and

2. Posting new events to the FEQ.

The user MODEL routine will never again be called

with ap empty FEQ, for that is permissible only

at simulation start-up. Note that since we are

creating an interactive model, crt I/0 can be

carried out to determine MODEL variable initial

values and to determine event times.

The modeler may define as many attributes as de-
siréd, using the active entity pointer provided
by COPESIM. The CREATE and SCHED routines are
sufficient to post the new entities on the FEQ
for simulation skart-up.

One of the events in routine MODEL should be a
crt Reporting Event, specified to occur at times
defined by the interactive user. In this way the
modeler can examine the simulation at any time
desired during the simulation execution.

Statistical collection and reports are also in
the modeler domain, and can be flexibly cen-
structed with guidance from the interactive user.



CODESIM: A Compact Discrete Event Simulator 365

Lastly the interactive user should be able to
control the length of the simulation dynamically
--running the model until the desired results are
achieved.

4. EXAMPLE: THE TELEPHONE MODEL

Consider, for illustrative purposes, the follow-
ing scenario for simulation: a telephone opera-
tor handling calis, with a maximum capability of
1 active caller and 4 callers on hold. We wish
to model this in a process-oriented manner using
CODESIM. So we write a MODEL routine with three
events: START, RING, and REPORT using a computed
goto on the event code of the active event to
call the proper event routine.

START can interact with the user to define what-
ever parameters are desired, to include the next
reporting time, call interarrival time, etc.
Given this data START can SCHEDule entities on
the FEQ (using CREATEs as necessary) for each
different model event.

REPORT, when invoked, can interact with the crt
user to determine what outputs are desired at
this time, to alter the trace of other model var-
iables, and to post statistics using STATSR for
value determination. The next reporting time can
be elicited from the crt user and SCHEDuled on
the FEQ, or the simulation can be halted.

The crux of the telephone model is routine RING,
which handies all aspects of the phone call pro-
cess. Table 1 illustrates this subroutine in
seven paragraphs of code.

The first paragraph of code utilizes the modeler-
defined ENTRY attribute to determine whether we
are starting or ending a conversation. At label
2 the phone rings and we create the successor to
this call, in bootstrap fashion. At label 3 we
check for call abort; if so we collect abort
stats, kill the entity and return.

Otherwise the call can go through at label 4, but
it must be enqueued if someone else currently has
the Tine. At label 5 the line is open so we
determine call length, schedule call completion
and return. Upon return the ENTRY attribute will
be incremented from 1 to 2 so control will pass
to step 6 as desired. Here we collect stats on
call time and ki1l the entity as we hang up.

At step 7 we check to see if someone else is on
hold, and if so we take the first caller and
initiate that conversation. In this way we can
fully characterize the calling process within one
event routine, rather than the event-oriented
approach of two events: one for the call and one
for its completion.

5. CODESIM OUTPUTS

Table 2 illustrates a portion of the output gen-
erated by the example Telephone Model. The head-
er information is output by CODESIM upon the
first modeler invocation .of the CREATE routine.
This provides the modeler an opportunity at simu-
lation start-up to override in MODEL or its sub-
routines any default values in CODESIM.

The next three questions emanate from the user
model START routine, defining a nontraced run for
20 time units. At that time CODESIM calls the
user MODEL routine which then invokes the user
REPORT routine. The statistical report is output
using routine STATSR provided by CODESIM, and
describes the queueing time and size of queue Q1,
the number of call aborts, and the Tength of
those calls completed. .

Further interaction at the end of the user REPORT
routine enables the user to continue with select-
ed changes to the model parameters. The crt ter-
minal TRACE is turned on for the next 2 time
units and control returned to CODESIM. We see
the next report interrupt posted, the call com-
pletion processing for call 30, and the call
start processing for call 31. The lines without
the word CODESIM emanate from the user model.

6. CONCLUSIONS

This paper has outlined the essential features of
CODESIM, and demonstrated its use through a sim-
ple informative example. The CODESIM software
package has decided advantages in size and speed
over other discrete modeling packages. Almost
complete programmer independence is provided with
a single minimal common block. The pointer con-
cept for queues frees the programmer from buffer-
ing the current active entity and enhances speed
as well.

The primitive routines of CODESIM are sufficient
for typical discrete modeting . . . the design is
predicated on providing a flexible foundation for
modeling. Certain models no doubt will result in
unique extensions to CODESIM. Our aim was to
provide a basis which would not impede immediate
use or quick extensions.

CODESIM was successfully utilized at Battelle to
support a discrete event simulation of data traf-
fic on a computer-to-computer high speed channel
Tink (Freuler and Rose 1983). It proved to be
sound, easy to use, fast, and efficient for inter-
active modeling. It is further providing the
basis for a hierarchical extension for generalized
modeling (Rose 1983a).

The telephone model presented herein illustrated
the capabilities for CODESIM to support inter-
active modeling in a format-free model. Future
research at Battelle is planned for the incorpor-
ation of two nontrivial GASP-based models into
CODESIM, enabling cost-effective, feasible inter-
active use (Rose 1983b, Rose and Freuler 1982).
Additional research is planned in the portability
area, both in different machines and different
Tanguages.



366

Lawrence L. Rose

TABLE 1. SUBROUTINE RING

oo

O

SUBROUTINE RING(PTR)

...DETERMINE PROPER ENTRY POINT THIS ENTITY...
ENTRY (PTR) = ENTRY(PTR) + 1

LOC = ENTRY(PTR)

G0 TO (2.6).L0C

...INCOMING CALL: BOOTSTRAP...
IF(TTRACE .EQ. 1.) PRINT*, "BR-RING"
CALL CREATE(KPTR)

ENTRY(KPTR) = 0 .

CALL SCHED(KPTR,RNG,1.2*RAND(1))

...ABORT IF ALL LINES IN USE, ELSE HOLD OR CONVERSE...
BEGIN(PTR) = T

IF(INUSE .LT. 5) G0 TO 4

ABORTS = ABORTS + 1.

CALL STATSD(MAXQ+1,ABORTS)

CALL KILL(PTR)

IF(TTRACE .EQ. 1.) PRINT*, "HANG uP"

RETURN

...ON HOLD IF ALREADY CONVERSING...
INUSE = INUSE + 1

IF(INUSE .EQ. 1) GO TO 5

CALL ADDQ(PTR,Q1)

‘IF(TTRACE .EQ. 1.) PRINT*, "PUT ON' HOLD"

RETURN.

...START CONVERSATION AND SCHEDULE COMPLETION...
IF(TTRACE .EQ. 1.) PRINT*, "HELLO"

CALL ‘SCHED{PTR,RNG,1.5*RAND(2})

RETURN

...END OF TALKING: STATS...

TSPAN = T - BEGIN(PTR)

IF(TTRACE .EQ. 1.) "GOODBYE ... CALL TIME =", TSPAN
CALL STATSI(MAXQ+1,TSPAN)

CALL KILL(PTR)

INUSE = INUSE - 1

...SERVICE AWAITING CALL...
CALL DELQ(PTR.Q1)

IF(PTR .NE. 0) GO TO 5
RETURN

END




CODESIM: A Compact Discrete Event Simulator 367

TABLE 2. CODESIM SAMPLE OUTPUT

Q1 TIME
Q1 SIZE
#ABORTS
CALLTIM

*

*

*
*

*

DO YOU WISH TO ALTER THE INITIAL MODEL VALUES? no
ENTER SIMULATION INTERRUPT TIME 20
ENTER CLEAR STATS TIME 25

$$$5$$ USER MODEL: REPORT INTERRUPT AT T = .2000E+02 $$$$$$

MEAN

.2014E+01
.2492E+01
. 1344E+01
.2768E+01

SHALL I CALL THE CODESIM BOMB ROUTINE FOR CHECKOUT? no
DO YOU WISH TO STOP THE MODEL NOW? no

DO YOU WISH TO CHANGE THE MODEL PARAMETERS? yes
ENTER: MAXNTT, TTRACE, QSTATS

==>

ENTER NEXT INTERRUPT TIME 22

CODESIM:
CODESIM:
CODESIM:
CODESIM:
CODESIM:
CODESIM:

CODESIM:
CODESIM:

—_— = -

B L

CODESIM: A COMPACT DISCRETE EVENT SIMULATOR

LAWRENCE L. ROSE
BATTELLE COLUMBUS LABORATORIES

VERSION 1.0
OCTOBER 1982

THE TELEPHONE MODEL

SIGMA MIN. MAX. 0BS. CURRENT
.8320E+00 .3975E+00 . 3611E+01 .2300E+02 .2415E+01
- 1306E+01 0. .4000E+01 . 1975E+02 . 3000E+01
.2857E+01 . 1000E+01 .5000E+01 . 1836E+02 .5000E+01
.9210E+00 ¢ .4789E+00 . 3924E+01 .2300E+02 . 3544E+01

25 1 1

= 20.0000 SCHEDL EVENT 2 AT 22.0000 FOR ENTITY

—

20.0546 MODEL: EVENT 3 WITH ENTITY 30
GOOD BYE... CALL TIME = .2715E+01
20.0546 KILL.. ENTITY 30

20.0546 REMOVE ENTITY 31 AT FRONT OF QUEUE 1
HELLO
RANDOM NUMBER .1925 DRAWN FROM STREAM 2

20.0546 SCHEDL EVENT 3 AT  20.3434 FOR ENTITY 31

20.3434 MODEL: EVENT 3 WITH ENTITY 31
GOOD BYE... CALL TIME = .2468E+01

20.3434 KILL.. ENTITY 31

20.3434 REMOVE ENTITY 33 AT FRONT OF QUEUE 1
HELLO
RANDOM NUMBER .9239 DRAWN FROM STREAM 2

n un




368 Lawrence L. Rose

REFERENCES

Freuler FT, Rose LL (1983), The Super Computer
Link Model, Battelle Final Report, July, 77 pp.

Kiviat PJ et a]3(1973), SIMSCRIPT 4.5 Programming
Language, C.A.C.I., Los Angeles, Califorria,
384 pp.

Pritsker AAB (1975), The GASP IV Sjmulation
Language, John Wiley & Sons, New York, NY,
451 pp.

Pritsker AAB, Pegden CD (1979), Introduction to
Simulation and SLAM, Halsted Press, New York,
NY, 588 pp.

Rose LL (1983); HELIX: A Hierarchical Multi-Level
Interactive Systems Simulator, Battelle
working paper, 15 pp.

Rose LL (March 1983), Production Modeling with
PRISIM. In: Proceedings 16th Annual
Simulation Symposium; pp. 41-54.

Rose LL, Freuler FT (April 1982), A Cpu Model for
Concurrent Processing. In: Proceedings 13th
Annual Pittsburgh Conference on Modeling and
Simulation, pp. 705-710.




