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ROUTING TABLE UPDATE EPOCH IN PACKET-SWITCHING NETWORKS*
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North Carolina State University
Raleigh, N. C. 27650

A computer communication network must be capable of managing its resources
efficiently using a routing procedure, flow control, and buffer management tech-
niques. A general network simulator has been developed as a tool in evaluating
the many possible combinations of such techniques. It can also be used in
evaluating existing strategies in operating networks and investigating new
techniques. In this paper the simulator has been used to investigate several
strategies of determining an optimum routing table epoch.

1. INTRODUCTION

A computer communication network must be capable
of managing its resources efficiently using a
routing procedure, flow control, and buffer
management techniques. The network routing pro-
cedure directs the information, or message, being
sent through the network to the correct destina-
tion "node." Flow control schemes regulate the
acceptance of new messages into the network. The
goal is to balance the amount of network traffic
congestion and the measure of system performance.
Closely related to the routing and flow control
strategies is the buffer management. Without a
well-designed strategy, buffer overflow and
buffer deadlock problems will occur.

Each network must select a routing strategy, flow
control scheme, and method of buffer management.
A multitude of such combinations exists.
TRANSPAC, TELENET, TYMNET, and ARPANET are exist-
.ing networks. TRANSPAC (Dreyfack 1979, Pouzin
1981, Schwartz 1980) provides a virtual circuit
service. The flow of data on each virtual
circuit is controlled on each individual logical
channel between the source node and the network,
or between adjacent nodes (Pouzin 1981). Buffer
space ‘at a node is dynamically allocated to the
individual virtual circuit queues. Paths through
the network for switched virtual circuits are
determined by a "call request" packet sent from
the source node to the destination node. Routing
tables at each node indicate which outgoing Tine
is to be used, dependent on the packet's
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destination. The routing tables are constructed
at a central Network Management Control Center.
Link "costs" are defined in terms of the line
capacity and number of Tink buffers. Updates
occur whenever a change occurs in a link cost
estimate.

TELENET (Mathison 1975, Sun 1982) also provides
virtual circuit service. A window scheme is used
on both the Tink and end-to-end level to restrict
the flow of data into and within the network.
Buffers at a node are grouped into a common pool
and shared by the input process, the receive
process, and transmission process. No limitation
is placed on the maximum number of buffers which
can be allocated per link nor per virtual circuit.
Routing at the nodes is accomplished using a
routing table provided by the Network Control
Center. A new table is distributed by the NCC
when a topological change occurs in the network.

TYMNET (Price 1977, Rajaraman 1978, Rosen 1980,
Schwartz 1977, Tymes 1971, Tymes 1981) transports
packets through the network using virtual circuit
service., Flow control is managed using a quota
system (Tymes 1981). Each channel on a 1link has
an assigned quota of the maximum number of packets
it is permitted to send at one time. As part of
its buffer management strategy, each port at a
node has associated with it a pair of buffers.

The routing of the virtual circuit is done when a
session request is issued. All routing is per-
formed by the supervisor node. Costs are assigned
to each Tink based on several factors: 1link band-
width, type of link, type of transaction, Tink
load, and possibly legal considerations.
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ARPANET {McQuillan 1977; McQuillan and Walden
19775 McQuillan, Richer, and Rosen 1980; Rosen
1980; Schwartz 1977; Schwartz and Stern 1980;
Tanenbaum 1971} routes packets through the network
on a datagram basis. Each nodé maintains its own
routing table. A1l nodes measure the actual delay
of each packet sent over each of its outgoing Tines
(McQuillan, Richer, Rosen 1980), and calculates
average delay every 10 seconds. If the delay has
changed "significantly” from the previous average,
the routing table is updated, arnd the new delay
estimates reported to all other nodes in the net-
work. After each 10-second period, if the
difference between the new and old average delay
has not exceeded the significance level, the

jevel is decreased by a fixed amount. The
significance level is reset to its original level
whenever an update is performed. When the level

reaches zero, an update is automatically performed.

The flow of information into and within the net-
work is regulated using a window scheme. When a
source node has a multi-packet message to send,
it must first send a request for buffer alloca-
tion to the destination node. If the destination
hode responds with an “allocate" message, the
transmjssion‘may begin.

Each of these networks has implemented a different
combination of routing strategy and resource
management. Is one approach Superior or is each
appropriate for different kinds of network
environments? Can performance be improved by
modifying any or each choice? What interactions
exist between the choice of routing strategy and
resource management? What impact does each have
on the measure of system performance? As a means
of exploring these quéstions, a general purpose
network simulation program was developed. In
particular, this paper examines a method of
determining an optimum routing table epoch. The
approach is compared with three other update
strategies.

2. THE SIMULATION PROGRAM MODEL

Typically, when a particular network and its
associated protocols are investigated, a simula-
tion program is developed specific to that net-
work. However, if several networks or combina-
tions of routing strategies and resource
management techniques are to be studied,
generating a different simulation model for each
individual network or strategy combination is
infeasible and impractical. The modél described
was developed as a tool for such comparative
studies.

The key to the simulator is its highly generalized
and structured design. The simulatioh program
contains two types of routines: 1) bookkeeping
and data management routines found in most simu-
lation, and 2) routing and resource management
dependent routines. Each individual event which
contributes to the realization of the network
simulation is coded in a separate, self-contained
subroutine. The main body of the program consists
of calls to subroutines initiating the program,
pealizing the events, and summarizing the results.
The input to the model would include the follow-
ing:

¥

(1) network characteristics--number of nodes,
neighboring nodes, communicating node pairs,
line speeds .

(2) initial routing table
(3) buffer distribution peir nodée

(4) controt information--number of statistics to
be collected, program stopping conditions

(5) general information (comparison dependent)--
message $izes, buffer 1imit per output Tine,
conditions determining busy nodes, message
interarrival, window size, routing parameters -

There are four main events to be simulated:
(1) arrival of a message to the network
(2) movement of the message within the network

(3) servicing the message at each intermediary
network node

{4) managing the routing information

Because the subroutines are completely structured
(duplicating code if necessary) and self-
contained, each appears as a black box to other
subroutines. A call is made, & certain response
is expected, e.g., the routing table is updated,
and the method used to obtain the response is
immaterial to the rest of the program. Simulating
different routing strategies requires the modifi-
cation of the routing parameters. Simulating end-
to-end flow. control schemes affects only events
(1) and (3) above. Because the program is highly
parameterized it may mean no coding changes are
needed; instead, particular variables only need

to be re-initialized. Similarly, flow control -on
the links affects only évents (2) and {3). By
providing this flexibility, it becomes possible to
simulate many network environments and resource
management strategies using a single program.

3. STRATEGIES USED IN DETERMiNING THE UPDATE
EPOCH

To illustrate the utility of this network simu-
lator, determination of an optimum routing table
epoch was investigated. The frequency of updating
the routing table is a compromise between report- -
ing changes as soon as they are detectéd and the
overhead on the line caused by the routing
packets. If the overhead did not exist or was
ignored, then it would be reasonable to update the
tables whenever any change was detected. Perfor-
mance would be improved, and any poor routing
decisions made during an update would be in effect
only a short time. However, overhead does exist
and cannot be ignored. The question then is,
"When should the routing table be updated?".

The routing strategy can be characterized by two
features (Chou, Powell, and Nilsson 1981):

1) metric function used to determine routes and
entries in the routing tables, and 2) frequency
of updating the routing tables. The metric
(Chou, Powell, and Bragg 1979; Chou, Bragg, and
Nilsson 1981) is a polynomial function of traffic
parameters. When evaluated for a particular
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network Tink, the resulting value is an estimate
of the delay or "distance" over the link. The
traffic parameter used in this paper is the
number of packets queued at each of a node's out-
put Tines.

For example, consider a source-destination node
pair (a,b) with a minimum of m hops between them
and a maximum of eight packets permitted to wait
for any output Tine along the path (Chou, Powell,
and Bragg 1979 ). For packets to be directed
onto an alternate path of n hops, the delay on
the m-hop path must be "significantly" greater
than the delay on the n-hop path. What is
significant depends on the values of m and n.

If m=n or m+l=n, a small difference in delay
estimates indicates that both paths are carrying
approximately the same traffic load. Uhen the
Toad is low, any small difference which exists
would be expected to last only briefly. By
immediately performing an update, upon its
completion the situation will probably have
reversed itself, necessitating another routing
table update before some network nodes will have
received routing packets from the first update.
When the traffic load is high, the alternate
path will aiso have a high traffic load. Any
packets shifted onto this route will encounter
highly utilized lines. Thus, if only a small
difference existed between the delay estimates,
it is expected that packets traveling the .
alternate route will actually have longer delays.
As the difference between m and n increases, the
level of significance also needs to increase.

For example, if m=2 and n=5, it is desirable that
a relatively large difference exist in the delay
estimates before sending a packet along a path
which will need three extra hops. The more hops
the alternative contains, the greater the proba-
bility conditions along this path will change
before the packet arrives at its destination. A
Targe difference in the delay estimates also
indicates that the traffic creating the differ-
ence is not brief in duration. In this paper
five algorithms for determining the routing table
epoch were compared.

3.1 The Absolute Algorithm

Using the network in Figure 1 from Chou, et. al.,

10

Figure 1: The Network Topolony

(1979, 1981), the minimum hop path and second
shortest hop path were found for the designated
communicating node pairs given in Table 1. For

Table 1: Source-Destination Pairs for the Traffic

Environment
Traffic

Pair Source Destination
1 2 7
2 10 5
3 5 8
4 7 9
5 9 3
6 6 2
7 1 10
8 3 6
9 8 1
10 2 6
11 2 5

example, pair 1 has a minimum hop path between
nodes 2 and 7 of 2 hops (from 2 to 3, from 3 to 7).
The second shortest path is 4 hops (e.g., from 2
to 10, from 10 to 9, from 9 to 6, from 6 to 7).
The average minimum hop path and average second
shortest hop path was then calculated. Depending
on the message size, the Tink transmission time

is calculated and multipiied by the number of hops
on the minimum hop path (if all links in the net-
work were not the same speed, this calculation
would need to be modified accordingly). The
number of hops corresponding to this path is added
to the transmission delay measurement. The
process is repeated for the second-shortest path
average. For example, for the node pairs in

Table 1, the average minimum path was 2.7 hops.
The average second shortest path was 3.1 hops.

An 800 bit message takes 0.083 seconds to traverse
the 9600 bits per second Tink, or 0.225 seconds to
travel the minimum path without processing or
queueing delay. To this value is added the hop
count, giving 0.225+2,7=2.925 units of delay.
Repeating the process for the second-shortest path
gives a value of 3.358 units. If the entire pro-
cedure were repeated for a 1600 bit message, a
value of 3.15 units would be obtained for the
minimum hop path and a value of 3.62 units for the
second-shortest path. The previous calculations
are given in Table 2. These units of measurement
will be used to determine a critical value with
respect to estimate differences.

The units of delay calculated above differ by
ABSDIF=0.433 units. Therefore, if the delay on
the minimum delay path has increased by more than
0.4333 units over the next shortest path, a
routing change should be made and a routing table
update triggered. Periodically (every 250 milli-
seconds in the simulation program), a node calcu-
lates its delay estimates to the other network
nodes. As it does, the absolute difference
between the old delay estimate and new delay
estimate is found, i.e., DIFF=ABS(DELAY_QLD-
DELAY NEW). If DIFF>ABSDIF a flag is set. After
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Table 2: Calculations for Traffic Environment

_ Desti-  Min. No.  Second
Pajr Source nation Hops Shortest
T 2 7 2 4
2 10 5 3 3
3 5 8 3 3
4 7 9 2 4
5 9 3 3 3
6 6 2 3 3
7 1 10 2 2
8 3 6 2 2
9 8 1 4 4
10 2 6 3 3
Avg. 2.7 Avg. 3.1

Transmissfon Time/Link, 800 bit message: ouu =
0.083 ‘
o ) . 1600 _
Transmission Time/Link, 1600 bit message: ggag =
0.167 '

Units of Measurement:
800 bit message: 2.7(0.083)+2.7=2.925 units
3.1(0.083)+3.1=3.358 units

1600 bit message: 2.7(0.167)+2.7=3.15 units
3.1(0.167)+3.1=3.62 units

the delay estimates to all other network nodes
have been compared, the flag is checked. If the
flag is set, a routing table update is performed.
If not, the node waits another 250 milliseconds
before repeating the process.

This algorithm js similar in its approach to the
new ARPANET (McQuilian, Richer, and Rosen 1980)
update algorithm. However, rather than using the
average delay experiénced over the time interval
as. ARPANET does , this "absolute" algorithm Tooks
at the difference between the actual delay at the
time the update decision is to be made, and the
previous estimate of the delay. If the absolute
value of the difference exceeds the critical
value, an update is performed. Wheréas the
ARPANET algorithm decrements the critical value
by a fixed amount each-time an update is not
performed, the critical value remains constant in
the absolute algorithm.

3.2 Modified Absolute Algorithm

Can the absolute algorithm be improved? As it
was described, the network-wide critical differ-
ence value was determined by the absolute value
of the difference between the delay measurement
on the average shortest delay path and the delay
measurement on the average second-shortest path.
The question becomes one of how well the averages
are representative of path length in the network.
If the network is designed such that alternate
paths between source-destination node ‘pairs differ
by a relatively constant amount, then using a
network critical value is reasonable. However,

if this condition is not met, a sepavrate critical
value can be calculated for each node pair combi-
nation. For example, in Figure 1 the network has
been designed in such a way that regardless of
how delay estimates fluctuate, node 1 has only
one possible output Tink to choose from; there-
fore, there is no need to update its corresponding
routing table. By using individual critical
values, this can be achieved by setting node 1's
critical values to a large positive value. How-
ever, when alternate paths are the same length,
rather than use a critical value of zero, a
network-wide critical valye is substituted. A
critical value of zero is too sensitive to random
traffic fluctuation. At any instant delay
differences are expected to exist on alternate
paths. Using a critical value of zero would
trigger an update each time the delay estimates
are checked. It was in an attempt to avoid such
frequent updating that the absolute algorithm
was developed.

3.3 Determinjstic Update Algorithm

This algorithm generates an update to the routing
table on a fixed jnterval basis. Regardiess of
changes in packet delay, the routing table is
updated at the end of every epoch. The epoch
used in this paper is 250 milliseconds.

3.4 "Buffer" Update Algorithm

Periodically (every 250 msec. in this paper), a
node compared the queue size at each output Tink
with the measurements taken at the last routing
table update. If the queue size had increased or
decreased by at least two packets at any queue,

a routing table update was performed.

3.5 Factor Algorithm

This algorithm used the delay measurements calcu-
lated in Table 2. Recall that an 800 bit message
would experience an average of 2.925 units of
delay on the minimum hop path, and 3.358 units of
delay on the next shortest path. The average
delay on the second-shortest path is a factor of
FACTOR=3.358/2.925=1.15 times greater than the
average delay on the minimum hop path. Periodi-
cally, a node calculates its delay estimates to
the other network nodes. As it does, the minimum
of the old delay and new delay estimate is found,
i.e., MIN=MIN(DELAY_OLD,DELAY NEW). If
(MIN*FACTOR)<MAX(DELAY_OLD,DELAY NEW),'then a
flag is set. After the delay estimates to all
other network nodes have been compared, the flag
is checked. If the flag is set, a routing table
update is performed. ’

4, SIMULATION RESULTS

Using the simulation program, the "absolute”
algorithm using both a network-wide critical
value and individual critical values was compared
with the three other algorithms in determining
the update epoch for the network in Figure 1.
Effectiveness of the algorithms was measured in
packet response time as a function of throughput.
The results of the comparison are shown graphi-
cally in Figures 2 and 3. For both an 800-bit
message and a 1600-bit message, either of the two
versions of the "absolute" algorithm provided
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Figure 2: Comparison of Routing Table Update Algorithms in the Network of
Figure 1 With a Message Size of 800 Bits
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Figure 3: Comparison of Routing Table Update Algorithms in the Network of
Figure 1 With a Message Size of 1600 Bits

better service, i.e., response time as a function
of throughput, than did the other update algo-
rithms. In addition, for this network, using
individual critical values in the "absolute"
algorithm provided better service than using a
network average. The experiment was repeated on
the 10-node network used by Price (1977) in his
data network simulations (Figure 4), and on a 15-
node modification of this network (Figure 5). 1In
these runs three of the update strategies were
simulated: the deterministic update algorithm,

the factor algorithm, and the "absolute" algorithm.

The "absolute" algorithm used a network-wide
critical value. The results are shown graphically
in Figures 6 and 7. Again, the "absolute" algo-
rithm provided better performance. For each net-
work simulated, operating under a low level of
throughput, all the update strategies performed

approximately equally well. However, as the
throughput level of the network increased, the
superiority of the "absolute" algorithm became
evident. For each network, the traffic environ-
ment remained stable significantly Tonger using
the "absolute" algorithm to determine the routing
table update epoch.

5.  SUMMARY

In order for any communication to take place
between nodes in a computer network, the informa-
tion being sent must be able to find its way
through the network to the correct destination
node. This is accomplished by the routing
strategy. In addition to transporting information
between a source and destination node, the network
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must be capable of managing its resources
efficiently. Flow control schemes and buffer
management have this pesponsibility. A multitude
of routing-flow control-buffer mapagement
strategy combinations exist. A recessary tool
to' evaluate the combinations is simulation. A
very general network simulator has béen developed
to aid such comparative studjes. In this paper,
the simulation program was used in comparing
several routing table update strategies to
determine an optimum ypdate epoch. It was shown
that a strategy using absolute differences in
packet delay estimates to trigger routing table
updates provided thé best sérvice. Service was
measured by packet response time as a function

of throughput. '

Figure 4: Network Example 2

9 14

Figure 5% 15-Node Network Example
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Figure 6: Comparison .of Routing Table
Update Algorithms in the
Network of Figure 4 With a
Message Size of 800 Bits
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REFERENCES

Chou W, Powell JD, Bragg AW (1979), Comparative
evaluation of deterministic and adaptive
routing. In: Proceedings of Flow Control in
Computer Networks, pp. 257-279.

Chou W, Bragg AW, Nilsson AA (1981), The need for
adaptive routing in the chaotic and unbalanced
traffic environment, IEEE Transactions on
Communications, Vol. COM-29, No. 4, pp. 481-
490.

Dreyfack H (1979), TRANSPAC starts up, wants
small users too, Electronics, April 12, 52:
70-72.

Mathison SL (1975), TELENET inaugurates service,
Computer Communication. Review, Oct., Vol. 5,
No. 4, pp. 24-28.

McQuillan JM (1977), Routing algorithms for
computer networks--a survey. In: Proceedings
1977 National Telecommunications Conference,
December, pp. 28:1-1 - 28:1-6.

McQuillan JIM, Walden DC (1977), The ARPA network
design decisions, Computer Networks, August,
Vol. 1, pp. 243-289.

McQuillan JM, Richer I, Rosen EC (1980), The new
routing algorithm for the ARPANET, IEEE Trans-
actions on Communications, May, Vol. COM-28,
No. 5, pp. 711-719.

Pouzin L (1981), Methods, tools and observations
on flow control in packet-switched data net-
works, IEEE Transactions on Communications,
April, Vol. COM-29, No. 4, pp. 413-426.

Price WL (1977), Data network simulation,
Experiments at the National Physical Laboratory

1968-76, Computer Networks, May, Vol. 1, No.
4, pp. 199-210.

Rajaraman A (1978), Routing in TYMNET. Presented
at- the European Computing Conference, -London,
England, May.

Rinde J (1977), Routing and control in a
centrally-directed network. In: 1977 National
Computer Conference, AFIPS Conference

- Proceedings, Vol. 46, pp. 603-608.

Rosen EC (1980), The updating protocol of
ARPANET's new routing algorithm, Computer Net-
works, No. 4, pp. 11-19.

Schwartz M (1977), Computer communication network
design and analysis, Prentice-Hall, Inc.

Schwartz M, Stern TE (1980), Routing techniques
used in computer communication networks, IEEE
Transactions on Communications, April, Vol.
COM-28, No. 4, pp. 539-552.

Sun MK (1982), Personal communication.

Tanenbaum AS (1971), Computer networks, Prentice-
Hall, Inc.

Tymes L (1971), TYMNET-a terminal oriented
communication network. In: 1971 Spring Joint
Computer Conference, AFIPS Conference
Proceedings, Vol. 38, pp. 211-216.

Tymes L (1981), Routing and fiow control in
TYMNET, IEEE Transactions on Communications,
Vol. COM-29, No. 4, pp. 392-398.




