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A model is presented for the blocking phenomena associated with queuing networks
with finite capacity queues. The basic idea behind the model is the calculation of the
average length of time the cells are in the ‘‘blocked” state, i.e., their downstream
queue is filled to capacity. The model was tested and verified against an actual simu-
lation for a simple network. Excellent agreement for the average quantities is
demonstrated between the model and the simulation for both the downstream and
upstream effects resulting from blocking. The model is quite general in its applica~
bility to M/M/c queuing networks and is easy to implement.

1. INTRODUCTION

Automation, emphasis on product quality and competitive
pressures are among the contributing factors leading to the
recent emphasis on manufacturing productivity. The
design of modern factories and the reconfiguration of exist-
ing facilities must consider much more stringent productivi-
ty criteria than the standards of past decades if they are to
lead to viable systems in the future. The flexibility that ex-
ists in the operation of a factory which, to a large extent,
depends on human labor does not exist in the automated
factory of the future. As a result, much more planning and
front-end engineering design is required for the successfu!
implementation of manufacturing systems than in the past.
Simulation is gradually becoming a very well recognized
planning and design tool for manufacturing engineering.
Developments in computer science, computer hardware in-
cluding personal computers and computer graphics have all
contributed to the added attention that simulation has been
receiving from the manufacturing community.

A very important consideration in simulations of manufac-
turing systems is the proper level of detail that should be
represented. Many versatile simulation languages exist to-
day which allow almost anything to be represented in a
simulation. This can lead to the design of very unwieldy
computer programs of little value in answering the ques-
tions faced by the manufacturing engineer. In many cases,
especially at the very early stages of factory planning and
design, thé basic data (e.g., how many machines, type of
transporters, storage capacities, etc.) are not even known to
allow the construction of a simulation. What is needed at
this stage of planning is an analysis tool that allows the
study of alternatives in fairly broad terms. Although it is
possible to use simulation in such instances, the proper

design of a reconfigurable tool allowing the comparative
study of alternatives is not an easy or efficient way of ad-
dressing the need.

Although queuing theory is a very mature subject in opera-
tions research, it has generally been a neglected tool in the
area of manufacturing engineering. This negligence is part-
ly due to the general tendency in manufacturing engineer-
ing against the use of analytical tools, and also due to the
lack of interest in manufacturing problems on the part of
queuing theory experts. The development of CAN-Q (Sol-
berg, 1977) has been generally neglected by the manufac-
turing community except in rare instances, although the
validity of the approach for aggregate performance predic-
tions has been demonstrated. The major strength of CAN-
Q, and queuing theory in general, is in its aggregate, time-
averaged predictive ability, the basic features required of a
factory planning tool. Yet, it is not uncommon to en-
counter expert factory planners and designers who are not
aware of the existence of such analytical tools.

As a predictive tool for manufacturing systems, queuing
theory is not devoid of limitations. For example, it is not
possible to derive much useful information from queuing
theory regarding the dynamic pesformance of systems.
Moreover, very small systems, or systems in which most
events are highly deterministic in nature, and the represen-
tation of limited storage buffers are instances where the use
of state-of-the-art queuing theory must be approached with
caution. Of these, the case of limited storage buffers is
probably one of the most important unsolved problems in
queuing theory.

It is perhaps appropriate to point out that queuing theory
has many applications beyond manufacturing systems. For
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example, it is quite often used in the analysis of communi-
cation and data networks where one is. concerned with units
of information being processed, as opposed to parts in a
manufacturing system. The limitation of infinite stofage in
practical quetiing approaches is not as serious a problem for
commitnication networks. as in manufacturing systems, as
we shall discuss later.

The purpose of this paper is the presentation of a model
for the blocking phenomena that result from the existence
of limited storage in manufacturing systems. The theoreti-
cal background of the model, as well as previous modeling
approaches will be discussed, followed by the presentation
of the present model. Comparison of the model results
arid the results of a simulation will be given both for the
upsiream and downstream phenomena that can result from
limited storage buffers in manufacturing systems. The pa-
per will be concluded by suggestions for future research in
this area.

2. BACKGROUND

In this paper we are concerned only with the subset of
queuing networks where the arrival is a Poissofi process
and the service is exponential. For such systems, the
theorems of Burke (1956) and Jackson (1957) are of partic-
ular importance. Burke proved that the departure process
for a queue with the above characteristics (i.e., M/M/1) is
also a Poisson process with the same mean. as that of the
arrival. Burke’s results are generalizable to a queue with s
servers, ie., an M/M/s queue. Jackson further showed
that in a nietwork of open M/M/s queues (“‘open”” signify-
ing that each node in the system could receive arrivals
from any other node, including from outside the system,
and generate departures likewise), each node behaves as an
independent M/M/s queue with a net arrival equalihg the
sum of the arrivals to that node. Jackson’s theorem has
profound implications in the application of queuing
theorem to many manufacturing systems; in fact, he was
motivated by the need for an analysis tool applicable to ma-
chine shops.

Unfortunately, the direct use of Jackson’s theorém has not
led to much success in the analysis of manufacturing sys-
tems. Solberg (1977) demonstrated that a very useful anal-
ysis tool for manufacturing systems can result if a closed
network of MYM/s queues is considered. In this context,
““closed”’ signifies that the total number of entities in the
system remains a constant, implying that a net departure
from the system is balanced by a net arriva} at the same in-
stant of time. Although this restriction may seem to be
limiting in its application potential, it has been demonstrat-
ed that in many situations such an approach (e.g. CAN-Q)
leads to surprisingly accurate results (Solberg, 1977).

Several explanations can be put forth, none of which
theoretically convincing, as to the reason for the success of
the closed network in the face of the apparent failures of
the open approach of Jackson. It is suggested, for exam-
ple, that in any real manufacturing system, some control is
always exercised in limiting the total number of entities in
the system, and, ‘at the same time, not allowing the system
to become completely depieted. A Jacksonian network,
suffers from the limitation of not limiting the entities any-
where in the system. The apparent limitation of the closed
approach in fixing the total number of entities at a definite
value ( as opposed to the real situation that only limits the
total number) seems to be outweighed by the fact that the
number cannot be unreasonably exceeded. In addition, the

closed approach can allow the study of a given system at
various levels of congestion, a very appealmg feature for
many manufacturing systems.

One of the limitations of the closed queuing approach is
that external arrivals and departures cannot occur arbitrari-
ly. It can be argued that if an approach existed to account
for the real effects of limited storage space int a Jacksonian
framework, a very general and versatile tool for the analy-
sis of arbitrarily complex networks of M/M/s/K (K being
the storage limit at each node) could result.

It is very important to cite what is meant here by the real
effects of limited storage space., In manufacturing systems,
limited storage space leads to the pheriomenon known as
blocking. Blocking of a resource (or a server) implies that
the resource is prohibited from processing any additional
entities unti] downstream storage space is available for the
entity currently in the resource. This may seem rather ob-
vious to many manufacturing engineers, but it is perhaps
instructive to consider that in communication networks,
the encounter of a filled buffer by an entity (or a unit of
information) often leads to the total destruction of the en-
tity, signifyinig a lost message. An M/M/s Jacksonian nét-
work can easily represents this situation by allowing a frac-
tion of the parts arriving at any node to be either diverted
to another node or to be completely lost to the system by
perhaps leaving the network altogether. This fraction is
represenied by the probability that the node contains more
than a specific number of entities, determined by the actual
limit that exists on the node’s buffer size. In manufactur-
ing situations, parts are seldom lost (intentionally!) due to
limited space. What is needed in this case is an approach
that will lead to the blockage of the feeding node upon the
filling of the present node’s storage buffer.

Attempts at modeling blocking in the context of queuing
networks have generally not been fruitful. Bell (1982)
discusses the modeling approaches proposed by Boxma and
Konheim (1981), Takahashi, Miyahara and Hasegawa
(1980) and Hillier and Boling (1967). He concludes that
although the models may be- useful in some irstances, es-
pecially in cases where the system under consideration is
near balanced conditions, they may lead to unrealistically
high throughput rates when service rates vary across the
network nodes. The authors suspect that many other
modeling approaches to blocking have been attempted.
The following section describes a model that seems to cap-
ture the true effects of blocking in a fairly simple manner.

3. MODEL FOR BLOCKING

The ceritral subject of this paper is the modeling of block-
ing due to finite queue capacities. Blocking is modeled by
increasing the mean service time of the node upstream of
the finite queue by a mean blocking time which is a func-
tion of queue capacity, arrival rate, and service rate of the
finite node. The M/M/s queue with a finite length has
been studied extensively with analytical results for utiliza~
tion, queue lengths, and expected waiting times presented
in the literature, Kleinrock (1975), Hillier (1980). Yet the
study of a network of several M/M/s/K queues has not led
to a practical modeling tool for the analysis of manufactur-
ing systems. This model makes use of the analytical results
for a single M/M/s/K queue to determine the mean block-
ing time for the upstream node. This mean time is then
added to the mean service time of the node. The entire
system is then treated as a Jacksonian network of M/M/s
queues with infinite capacity.
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Consider the simple network shown in Figure 1. Three
M/M/1 queues are shown in series. The simplicity of this
network is not a requirement for the applicability of the
model, but is only used for the sake of clarity. Let the
middle node be a finite capacity queue, allowing a max-
imum of K, entities to be waiting for service. The other
notation vnsed should be clear upon the examination of Fig-
ure 1. For a single M/M/1/K queue, theoretical results are
available for the mean departure rate as a function of mean
arrival rate and mean service rate. This is given by

The basic idea behind the model consists of allocating the
difference between the arrival rate to the node with the
finite buffer and the departure rate from that node to a
mean blocked time per entity in the previous node. The
mean blocked time for node 1 in Figure 1 thus becomes

TB=7'S[)\_)\,]7 )
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where 7g and 75 are the mean service time and the mean
blocked time at node 1, respectively. Having accounted for
the blocked time of node 1, it is clear that the finite buffer
problem has been completely eliminated in that the addi-
tion of the blocked time of node 1 to its regular service
time 7¢ will allow the treatment of the problem as a queu-
ing network with infinite buffer size at node 2. Therefore,
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It is clear from the foregoing that such an approach is quite
generalizable to very complex network of M/M/s/K
queues. Theoretical results for the departure rate from an
M/M/s/K queue are well-known. It is therefore possible,
in simple cases, to start at the last node of a network and
work backwards throughout the entire system and appropri-
ately solve for all the blocked times of the nodes. For
more complicated networks, a system of simulataneous
equations need to be solved for the determination of
blocked time at each node. The actual parameters of the
network can then be solved for by assuming that a Jack-
sonian M/M/s network with effective service rates which
now also includes the blocked rate is representative of the
performance of the system.

The authors provide no proof for the proposed model. Let
it suffice to say that the method has intuitive appeal, as well
as a well-founded basis for recovering the relevant parame-
ters of the finite queues, i.e., the theoretical solution for a
single M/M/s/K queue. At the same time, it is not rea-
sonable to claim general validity for the model without ac-
tual comparison of the results with a rigorous or experi-
mental solution. Since no rigorous solutions for the gen-
eral case exist, the simple network shown in Figure 1 was
simulated and the results were compared with the model
predictions. Thé comparison is discussed in the next sec-
tion.

4. MODEL VERIFICATION

The system shown in Figure 1 was used to evaluate the
model. The system consists of three individual nodes, each
containing one server and a queue. The queue capacities,
arrival time and service times all were input parameters to
the model. The queues associated with the first and last
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Figurel. Network of three nodes.

nodes were assumed to have an infinite capacity. The ca-
pacity of the middle node was allowed to vary.

The model was tested against a simulation written in the
event scheduling world view of SLAM II for the same situ-
ation. Exponential distributions were used in the simula-
tion for the inter-arrival and service times.

One interesting aspect of the simulation behavior is the
large number of observations required to obtain a reason-
ably accurate estimate of the mean behavior of such a sys-
tem. This is hardly surprising for the M/M/s type of prob-
lem. We were guided by the treatise of Wilson (1979) in
replicating the simulation results ten times, each with a
different random number stream. In addition, each replica-
tion consisted of over 30,000 observations, leading to a po-
pulation size of over a third of a million observations per
point. The random number streams employed are those
supplied in the SLAM-II package and are traceable to
Schrage (1979). Having taken these precautions in gen-
erating reliable simulation results, the means resulting from
the simulation are estimated to be within 5% of the true
mean with a confidence of better than 95% for all cases
shown in this paper.

The simulation properly accounted for the true effects of
blocking by allowing the part to reside in its current node
until room was available in the downstream queue. As part
of the simulation, statistics were collected both for the frac-
tion of time each server was blocked in addition to the
fractions of time it was busy and starved.

The parameters used for comparing the model results with
simulation are as follows: A =0.5; u;=02; u,=04;
3= 0.3. These values are, of course, arbitrary. However,
as the results are obtained with varying capacities for the
middle node, the comparison will encompass a range of
conditions as far as traffic density for the first node is con-
cerned.

Various system parameters predicted by the model can be
compared with the simulation results. It is of particular in-
terest in this case to examine the effects having to do with
blocking. For this purpose, the fraction of time that the
upstream node is blocked is shown in Figure 2. It is ob-
served that the model results are indistinguishable from the
simulation results if one considers the uncertainty remain-
ing in the simulation (5%). This behavior of the model
alone gives much confidence in the soundness of the
modeling approach. As expected, the blocked fraction be-
comes less and less significant as buffer size is increased
until a critical buffer size is reached, in this case approxi-
mately 11, beyond which no significant blocking is ob-
served. Analytical tools of this type are of utmost impor-
tance in manufacturing engineering to help decide the op-
timum buffer size needed for a given application.

It is intuitive that as the allowed buffer size is reduced, the
upstream node becomes more congested. The comparison
in the expected length of the upstream queue is shown in
Figure 3. As in the previous case, excellent agreement is
observed, further verifying the adequacy of the model in



210 Bahram Keramati, Joan M. Lommel

+—Amodal
.07 '1“ E"‘B::i:huon
1 \
F 1
06 43
R )
$
1 .05 |
o
N
{ 04 o)
]
H .03 | \
K .,
E [\
b 02 -
N
.01 D
T T T —F — T
2 4 [ 8 10 12 14
QUEGE 2 CAPACITY
Figure2. Blocking of cell 1 due to finite queue 2 capacity.
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Figure3. Effect of finite queue 2 chpac—-ity‘on length of quene 1.

the representation of the upstream effects of blocking. Fi-
nally, the average waiting time in the upstream queue is
shown in Figure 4 with the same degree of agreemerit be-
tween the model and simulation results.

A very mterestl’ng feature of the model is. that all the
effects of blocking are represented only by adding to the
service time of the UPSTREAM node a blocking time, as
described in the previous séction. No downstream effects
are modeled. In fact, the upstream propagation of blocking
stops upon the encounter of thé first infinite queue. The
authors suspect that these observations may in fact have a
theoretical foundation for a network of M/M/s/K queues,
although they are not aware of the existence of such a
proof. The upstream effects of blockmg predlcted by the
model have already been successfully compared with simu-
lation results. Figure S shows that, as predicted by the
basic structure of the present model' the downstream
effects of blocking as far as the expected length of the

downstream node is concerned is negligible. Similar agree- -

fent exists between the model and simulation results for
other parameters associated with the downstream node.

Though validation of the model described above was per-
formed for a system of three single server nodes, it is pos-
tulated that these results can be extended to a more com-
plex system such as one with multiple nodes and servers.
However further testing of the model with such systems is
necessary before such a claim can be proved. Investigation
of a multl-server, multi-node systetn may be done by
‘thanging the appropriate input parameters, Such a simple
adaptation is possible because all the equations utilized in

&—B yodal
G---Osimutation

" CMED X MEre-) DZ-DE

T T T T T =T
2 4 § 8 18 12 14
QUEUE ‘2. CAPACITY
Figured4. Effect of finife queue 2 capacity on waiting time in
queite 1.

1

A—Amodel
@--Qsimuintion

0.97%
9.95 4
0,925

8,875 |

T-OZMC W MEMmeo

0.825 J

8.8

T - I T
4 5 . 8 10 12
QUEUE 2 CAPACITY

Figure5. Effect of finite queue2 capacity on length of queue 3.

calculations by the model are applicable to multiserver sys-
tems.

A logical application of the model is in complex manufac-
turing situations, such as a job shop. Provided that the
probability of a given item following a certain route is
known, adaptation of the model is possible to represent
this situatiori by including an additional factor in the block-
ing time. If the input to node ¢ comes from nodes a and b,
the routing factor for node a is the arrival rate to node c
from node a divided by the total arrival rate to node ¢ from
nodes a and b. The blocked time in this case is equal to
the product of the routing factor and the blocked fraction
divided by the service rate of the blocked node. Once
again the calculations would proceed backwards through the
system until the first node was reached. As in the case
presented in this paper, once the assignment of the blocked
times to the appropriate nodes is completed, all the
relevant parameters of the system are calculated by using
the results for a network of M/M/s/o queues, as given by
Jackson.

5. CONCLUSIONS

A model was presented for the representation of the mean
performance of queuing networks with finite capacity
gueues. It was shown that the model produced excellent
mean results as compared to a simulation of a simple net-
work of three nodes. Although the case of muilti-server
nodes with complex routings was not compared with simu-
lation, both the upstream and downstream effects resulting
from blocking due to finite capacity queues was shown to
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agree quite well with simulation results. It is therefore rea-
sonable to expect that the modeling approach will prove
correct in arbitrarily complex situations. Hpwever, this ex-
pectation needs to be verified by actual simulation experi-
ments.
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