simulation.

called ECSS.

percentage

algorithms,
evaluations of this type.

Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

AN OPEN QUEUEING NETWORK VIEW OF COMPUTER SYSTEM PERFORMANCE

Duane R. Ball
FEDSIM

ACMS 1is a modeling system which translates user-supplied
hardware and software descriptions into an activity network and
then uses open network gqueueing theory approximations to
estimate the time required for transactions to pass through the
network. It is particularly suited for use in estimating the .
capacity of a computer system, identifying system bottlenecks,
evaluating the performance of proposed hardware configuration
and software designs, identifying +the least-cost set of
resources required to achieve a desired performance level, and
evaluating the performance impact of both new applications and
growth in existing ones.

Features that support the automated sizing of computer systems
make ACMS wunigue among analytical modeling tools. ACMS
provides the user with statements to specify device costs and
constraints on the number of devices of each type that may be
configured. Based on these costs, device performance
characteristics, and process completion time goals; ACMS will
select, from a menu of possible choices, a set of hardware
which minimizes system cost and meets the performance goals.

a federal center for As time passed, however, FEDSIM's

computer performance analysis and business shifted from the analysis
The primary modeling of existing systems to the analysis

at PFEDSIM has been a of proposed systems. The wealth of

discrete event simulation language measurement data available for
ECSS was well suited existing systems is not available

FEDSIM's needs. A large for proposed systems. In addition,

of the work done at the number of design alternatives

FEDSIM involved the evaluation of which must be considered has
special purpose operating systems increased dramatically. Discrete
for existing systems. Because ECSS event simulation has proven to be
a highly detailed too slow and too costly in this
representation of operating system environment. Analysis of actual
it is well suited to preject cost dats indicated +that

much more time and money was being

spent in model development than in

model experiments and analysis.

CH1953-9/83/0000-0133 $01.00 © 1983 IEEE

134

money was being spent in model
development than in model
experiments and analysis.

To respond to these problems, FEDSIM
decided to acquire or develop & new
tool more suited to ‘the changes in
the business environment. It was
decided that the tool must have the
following characteristice:

1. permit rapid model
development

2, have a low cost per
experiment

3. be suited to performance vs.
cost trade-off analysis

4. permit ekperiments +to be

performed in interactive mode.

One ‘characteristic that ECSS has
that was not a requirement for the
new +tool is the potential for
extreme accuracy! Becatise the
systems to be studied are in the
design phése, developing ektremely
accurate models would not be
justified by the amount of data
available to parameterize the
models. The tool would be required
to determine which of a number of
proposed alternatives is better but
not, mecessarily, by precisely how
. much.

The requirements for speed led us to
corisider a tool based on analytical
methods rather than simulation.
Reviewing the existing analytical
computer modeling toolg, we found
that they all had one or more of the
following shortcomings:

Duane R. Ball

1. the amount of structural
data (i.e., number of customer

classes, priority groups, etc.)
which could be represented was
limited,

2. the model definition

languages were oriented toward
specification of queuing system
problems rather than computer
performance problems (e.g.,
requiring specification of Visi
products),

3. the wuser interfaces were
very poorly designed.

4. the model CPU time was too
high to conduct performance vs. cost
trade-off analyses.

Ve decided at this +time that we
could either wait tfor someone' to
develop a tool which suited our
needs, ér develop a tool ourselves.
Becausé of the immediacy df our
needs, we decided to develop an
analytical based modeling tool. The
tooel which was developed is called A
Computer Modeling System (ACMS).

ECSS has a very natural syntax tor
describing computing hardware and
applications routines. At the time
ACMS was being designed,
approximately fifteen analysts at
FEDSIM could describe computer
systems using the ECSS syntax.
Because of the ECSS experience base,
adopting the ECSS syntax as the
model specification language for
ACMS was a logical choice. In
addition, having a common
"worldview" for both tools allowed
analysts to do preliminary analysis
usihg ACMS and then transfer to ECSS
as the specifications for the
modeléed system developed and both
‘the requirements for accuracy and
availability of data increased.

An Open Queueing Network View of Computer System Performance

The ECSS/ACMS worldview separates
the specification of computer
systems into three major components.
The first component is the set of
resources, Resources are
represented as a collection of
"things" from which service may be
include both

physical resources, such as CPUs,

requested. They

and logical resources, such as disk
files. The second component
‘represents éﬁé‘épplication processes
which are ordered sequences of
reguests for service from the
resources. Application processes
can represent anything from the
execution of routines on a mainframe
to the physical manipulation of data
outside the bounds of the computer
system. The final component is the
operating system which is

represented in ACMS by specifying

each resource's dispatching
discipline and overheads for
servicing requests. , For example,

requests for service can be
processed first-come, first-served,

shortest job first, etc.

Consider the hardware schematic in
Figure 1I(a). It consists of a
central’ computer, two channels,
three random-access disks, twenty

terminals, and a printer. The ACMS -

statements which can be used to
model the hardware are shown in
Figure I{b).

The application process which
executes on this hardware represents
on-line text-editing by up to twenty
users simultaneously. Fach terminal
user issues a series of requests to
the system, which require system
resources, and require rapid,
interactive responses.

Let us now consider in more detail
the behavior of an individual user
of the text-editor system. Suppose
the user is interested in changing
something that was previously
written on disk as a text file.
First, the wuser walks into the
computer room and sits down at an
available CRT terminal. By pressing
some buttons and typing in the
account number, the user logs into
the system. The user then
identifies +the file to be edited
which causes the system to bring
part of it into working storage.
The user then waits for an
acknowledgement that indicates the
file is ready to be edited. . When
the system responds, the user
proceeds to issue a series of
editing commands, some that modify
the file and some that simply
display certain sections at the
terminal. After issuing each
command, the wuser waits for the
system to acknowledge +that the
operation is complete and -then
pauses a short time to think about
the next command. Finally, the user
issues a command to produce a
hard-copy 1listing of the revised
file on the printer. For our
text-editor, +this 1listing request
requires a 7job to be submitted to
the batch job stream. The user then
logs off and waits for the listing.
Figure II(a) depicts this behavior
graphically.

At one level, the above is a
description of the behavior of one
particular user. However, assuming
this is a "typical" user, the same
description may apply to several
users who all do about the same
thing. Though certain parameters

135

136

Duane R. Ball

0,000 Septrvetbus /me
¢ boneh purtbens
10 memngs ution

SYSTIN CONFIGIOATION FOR AR TW-1INE TEXP-YDITOR

FIGURE I{a)

[$it dowm at'e terminal 41
, i
[teptned ity e |
. i
l [——— AJ
J
3
l tve on editing commerd J
ord wolt Tor 8 resporse
i
l Pene to comider neat cammend J
o
=
l Request o listing |
| T
I Log off ond leeve the termingl i

TEXT~EDITOR SYSTEM USER BERAVIOR

FIGURE II({a)

000310 SYSTEN BESCRIPTION
0
000330 SPECIFY 1 CPU WH

ICH

coo:An TAECUTES 100000 INSTRUCTIONS PER SECOND
00533
oco:so SPECIFY 20 A.TERMINALS
000370
©00380 SPECIFY WENORY MHICH STORES 4 PARTITION
00037
000400 SPECIFY ACCTE.FILE
oco4
000420 SPECIFY X T.DISK WHICH
000430 TRANSHIY 32000 BYTES PER SECOND
00442 AND ABSURD 20 WILLIBECONDS PER ACCESS
000450
000440 SPECIFY BUFFER.POOL WHICH

. 000420 SYORES 10 RESSAGES

i pooaBo
000490 SPECIFY 20 T.TERKINALS WRICH
009300 TRANSNIT 150 CHARACTERS PEK RECOND
003510
002520 SPECIFY Y.PRINTER UHICR
009539 TRANSHITS 10 LINES PER SECOND
0003540

0C0%50 SPECIFY CHI WHICKH TRANSNITS 100000 BYTLS PER SECOND

0003460 N
000370 SPECIFY CH2 MHICH MULTIPLEXES 32000 BYTES PER SECOND
boo380Q

COOZP0 SPECIFY PATH BISX.PATH WHICH

000400 COMNECTS SPECIFIC Y.DISK TO CR3

000610

000620 SPECIFY ’AYH PR.PATH WHIC

000430 CONNECYS i.PRXl!tl ¥0 thH2

000440

0004650 SPECIFY PATH T.PATH WM

0024460 CONHECTS IPIHFH: T.TERAINALS TO CH2
000470

05CAB0 EMD

ACHS 11 SYSTEM DESCRIPTION

FIGURE I (b)

000690 WORNLDAD DESCRIPTION
009700 FROCESS USER

000710

000720 ALLOCATE A.TERMINALS
000730

000730 RUN LOGON

€00750 [0 4 TIMES

000740 SEND' 14 CHARACTERS VIA T.PATH
000770 RUN INTERACTION
000780 8alT FOR 10 SECONDS

000790 END.DOD

0COR0OC RUN LIST0FF BUT CONTINUE
C00010 RUN LOGOFF

000820 DEALLOCATE A.TERMINALS
00dB30

$03840 END

“DGe8S0 SIEFR LOGON

000640

© 000870 ALLOCATE ACCTB.FILE
000850 RECEIVE 800 BYTES VIA DISK.PATH

00CHY0 DEALLOCATE ACCTG.FILE
Go0?00

000910 EXECUTE 3500 INSTRUCTIONS ON CFU

000940

000530 SEND 7200 BYTES VIA DISK.PATH
000940

000950 END

ACMS L1 WORKLOAD DESCRIPTION

FIGURE II(b)

cema . e

* YA, o came

-

P

. me

An Open Queueing Network View of Computer System Performance

may differ from user to user, e.qg.,
the length of the file being edited,
the disk on which it is stored, or
the amount of editing done, the
behavior of each user is similar in
terms of the nature and sequence of
activities during the session.

To! represent this kind of behavior
in an ACMS model, we use the process
construct. Remember a process is a
sequence of events that occur over
time and have some logical relation
to each other. For example, the
actions shown in Figure II(a) make
up such a ‘sequence: each box
describes an event, time may pass
between events, and the events are
logically related since they
describe one user's behavior during
The ACMS
statements which may be used to

a text-editing session.

model this process are shown in
Figure II(b).

Using an ACMS model, we might like
to determine the average time it
takes to respond to a user request,
the effect of different numbers of
terminals on <response time, the
utilization of each device, the
effect of queuing delays, or answer
other questions about how the system
might perform under various
conditions.

Once the static structure of the
computer hardware and applications
software has Dbeen defined, the
dynamic workload for the system must
be specified. This workload is
stated in terms of the mean time
between arrivals (MTBA) of events
which trigger the execution the of
application processes. If no device
is 100% busy in the steady state,
the rate of
application processes will equal the
rate of completion. The concept of

initiation of

"inifiation rate = completion rate"
is called forced flow. Forced flow
and the use of open queuing network
analysis techniques permit ACMS to
analyze

moderately complex

situations fairly rapidly.

ACMS combines decomposition and
heuristic aggregation in its
analysis technique. Active devices
{(those devices whose service time is
a function of request size —- e.g.,
CPUs) are
Assuming that (1) the events which

considered first.

trigger applications processes are
generated by Poisson processes, (2)
the distribution of service requests
within applications processes are
exponentially distributed, and (3)
the dispatching discipline for each
device is work conserving (never
allows the device to go idle when
unserviced requests are waiting and

does not change the size of the

service requests) then the network

of active devices may be decomposed
and each device analyzed in
isolation. Passive devices (those
devices which are acquired and held
while service is received from other

devices) are then evaluated.

Analyzing passive devices 1s much
more difricult than analyzing active
devices. While a network composed
entirely of active devices can be
easily,

decompesed relatively

networks containing passive
resources are highly interdependent.

Still, certain observations can be

made concerning +the behavior of.

passive devices. The first
observation is that a passive device
which "surrounds" a single active
device will not increase the time to
service & request provided the
utilization of the passive device is

less than 100%. In this case, a

passive device only adds a new state

137

138

to a request which is waiting for
service from the active device
(i.e., waiting in line and holding a
passive server) . The problem
becomes more compiex, however, when
a passive device surrounds two or
more active devices. Requests
desiring service from an idle active
device may be blocked because the
passive device is full of regquests
waiting. for, or being served by,
- another active device. As the
number of simultaneous requests a
passive device can service and the
the numbetr of active devices within
it increase, calculating the time a
request waits to receive sexvice
becomes virtually impossible. To
estiiate this time, ACMS considers a
request time-in-queue to be the sum
of +two compénents. The first
component arises when lines for one
or more active devices extend beyond
thé bounds of the surrounding
passive device. The time for
transactions to entexr the queues (or
servers) within the passive is the
sum of these "“serialized" times.
The second component is +the time
resulting from transaction blocking
(i.e., an active device within the

bounds of the passive is idle while -

ACTIVE SERVER “A"

SERIALIZED
QUEGR TINE
YOR *A®

. BLOCKING *
e

SERTALIZED
QUEUR TINE
rOR *3*

TRUNCATED

‘Duane R. Ball

[

a transaction is waiting because the
surrounding péssive is full). ACMS
estimates these components of delay
in <¢alculating the +total queuing
delays £for passive devices. This
aggregation process is illustrated
by Figure III.

Because ACMS uses approximations
which cannot be defended formally,
it is necessary to determine the
degree to which its predictions are
valid. Because of the close
relationship between ACMS and ECSS,
ECSS discrete event simulation
models were <choseh as Yactual
systems" to which ACMS predictions

could be compared. ‘Since ECSS
output statistics undeyr the
assumptions of exponential

inter-arrival and service times are
random variables, the simulations
were replicated so that confidence
intervals around parameter estimates
could be computed. Nine systems
were simulated. The experiments
were designed so that flaws in the
methodology ¢ould be detected.

One of +the test problems is
illustrated in Figure 1IV(a). In
this problem, the modeled system

MCTIVE SERVER "2

FIGURE IIT

An Open Queueing Network View of Computer System Performance

consists of two job classes. Jobs
in the first job class request a

buffer from a shared buffer pool and
then execute for 0.1 millisecond on
a CPU. Jobs in the second job class
also request a buffer, but then
execute for 1 second on a second
CPU. The shared buffer pool
consists of two allocatable buffers.
Figure IV(b) compares the simulation
results to ACMS predictions. In the
remaining experiments, ACMS
predictions were found to be within

10% to 25% of the BCSS mean values.

—lll

o Il

Sr.:eamz

S

2 Allocatable
Buffers

SCHEMATIC FOR A VALIDATION EXPERTMENT

FIGURE IV(a)

JOB STREAM 1

ECSS
1/MTBA 1B UB ACMS %
.5 .45 0.57. 0.47 -8
.6 .86 1.06 0.95 -1
.7 1.51 1.93 1.78 +3
}.8 2.42 3.13 3.46 +24
.9 6.06 10.02 8.48 +5

JOB STREAM 2

ECSS
1/MTBA LB UB ACHS %
.5 1.92 . 2.07 2.00 +1
.6 2.42 2.70 2.50 -2
.7 3.17 3.6¢ 3.33 -2
.8 4.11 4.90 5.00 +11
.9 7.88 11.88 10.00C +1

FIGURE IV (b)

ACMS has a number of commands which
permit the user to request
performance statistics for the
modeled system. These commands are
summarized in fable 1. Two
particularly noteworthy commands are

CONSTRAIN and RELAX. These commands

are used to describe the feasible

region for design optimization

problens. Because ACMS can solve
performance problems wvery qguickly,
it is well suited to the iterative
solution techniques required to

solve these optimigzation problems.

TUNRCTION

WORKLOAD 'SPECIPICATION THRUPUT Set Desired Throughput
RATIO Set Workload Composition *
MTBA Set Mean Time Batween Arrivals
LISTR List the Above Values

PERPORMANCE STATISTICS LISTB
LISTH

uus Hinmum Job Complstion

for This Configuration

LISTS Report Response Time and Device
Utilizations
LISTU Report Users of a Device or
Devices Used by a Process
LISTR Raport Process Service and
Queuing Times
LISTD Report Number, Rate, Hean
Service Time, and Request
Arrival Rate for Devices
SCALE Reset Tinme Units for Reports
BYSTEM DESIGH TrIX Temporarily Changes Device
Characteristics
IN s-e Time
RELAX SPlcity nwici Characteristics
t May Ba Changed To Mest
u'!omnc- Goals
BWITCH Changes the Curnntly Selected
Device in a “CALLED* Group
» LISTC Report Constraints and Relaxed
Davice Characteristics
LISTO Lists all Devices in a "CALLED

-
Group and Indicates Device
Which iz Currently Selected

USER AIDS COMMENT Record User Suggestions

HELP Report Command Format and
nction
TUTORIAL Generats Sample ACHS Session
PRINT The Cmnnnd Turns Printing
0ff on the Terminal
BZSSION TERMINATION QoI Exit ACMS
- or IND

Suwmarv of XM3 Carmands
TARLE I

ACMS can solve problems of the form
"minimize total hardware costs

subject to application process
completion times (response times)
and technological constraints." The
problems which can be solved include
determining the type and number of
devices which will minimize total
system cost. For example, a
solution might be "buy the iodel A
CPU, 8 Model B disks, 4 Model C tape

drives. etc." To solve problems of

139

.\‘

140

this type, ACMS uses the following
optimization heuristic:

Step 0: For each device type,
select the least cost device
for the initial configuraticn.

Step 1:

for integer numbers of devices.

Relax the ceonstraint

Use the method of Lagrange
multipliers to £ind the number
of devices in the current
configuration which minimizes
total cost. Round each device
. quantity to the next higher

integer.

Step 2: For each device type,
f;om most to least cosgtly,
decrease the number of devices
in the configuration until an
additional
device of any type

decrease of one
would
violate either a reponse time
or a technological constraint.

Sfep 3: Determine if adding a
device to the most costly
device type, whose quantitiy
can be

increased, permits

enough devices of lower cost to
have their quantities decreased

so that a lower total system
cost results. Repeat this step
while such device exchanges are
possible.

Step 4:
device

Select the least cost
which has not been
evaluated in a configuration
and which has the potential to
reduce total system cost. If
no device which meets these
conditions exists, then go to
Step 5.

Step 5. §STOP.

In theory, this algorithm has many

Duane R. Ball

shortcomings. The most significant
shortcoming is that the number of
possible combinations of devices
within device types is severely
limited.
algorithm has proven to be extremely
effective. FEDSIM has used this
feature of ACMS to build a model

consisting of over two dozen

in practice, however, the

application processes and a
collection of hardware resources
which included several CPU models,
memory sizes, DASD types, etc. The
numerous

(e.g..,
only certain classes of'memory would

model included
technological constraints
operate with particular CPUs due to
electronic incompatibilities). -ACMS
converged very quickly to
which met the
response time and

configurations
technological
constraints and had a total system
cost equal {or nearly equal) to the
cost found by complete enumeration
of the feasible region.
:

In summary, ACMS has satisfied
FEDSIM's original design goals. It
is well suited to rapid model
development, inexpensive execution,
and, in many cases, was more
accurate than originally
anticipated. One problem with ACMS,
however, has been applying it in

situations +that do not meet the

assumptions concerning the
interarrival times of events
triggering the application
processes. ACMS 1is designed to

model systems in which “work"
arrives "randomly." Analyzing other
with ACMS can

results. To

arrival patterns

produce misleading
overcome this problem and extend the
usefulness of ACMS, ECSS III is
under design at FEDSIM. ECSS IIX
will be a hybrid modeling system
which combines the speed of
analytical modeling with the

robustness of discrete-event

