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This paper describes how micro PASSIM,
transported from the Apple II to the HP 9836.

a GPSS based simulation system, was

The problems associated with

moving a large program form one UCSD Pascal system to another are discussed.
Micro PASSIM was transported to the HP system so that an_ Ethernet to HPIB

interface board could be modeled.

The model is described and the results

obtained from the simulation are discussed. A discussion of the advantages and
disadvantages of using micro PASSIM rather than a standard language, such as

GPSS, is also included.

1. INTRODUCTION AND OBJECTIVES

This paper describes how the micro PASSIM a GPSS
based simulation system, developed by Barnett,
(Barnett 1981) was transported to the
Hewlett~Packard 9836 desktop computer and used to
simulate an Ethernet WNetwork Interface Unit
(NIU). PASSIM, which is based on GPSS, was
developed at the University of British Columbia
for use on a minicomputer (Uyeno 1980). PASSIM
was modified by Claude C. Barnett, Walla Walla
College, to run on the Apple 1II microcomputer.
The system he developed, micro PASSIM, was
written in the Apple version of UCSD Pascal.

The NIU described in this paper is designed to
link the Hewlett-Packard Instrumentation Bus
(HPIB) (Hewlett—Packard 1979), with Ethernet
(Xerox 1980). The NIU has its own micro
processor and buffer memory. It also has
dedicated processors that interface with the HPIB
and the Ethernet.

2. TRANSPORTING MICRO PASSIM TO THE HP 9836

As stated above, one of the reasons, we chose to
use micro PASSIM was that it was writtem in UCSD
Pascal and the HP 9836 supports UCSD Pascal.
Unfortunately, this did not mean that programs
could be transported directly from the Apple to
the HP. The following describes the major
differences between the two implementations.

2.1 pifferences between Apple and HP Pascal

Some of the differences described in this section
were eliminated by simply using the editor to
replace one word with another. Others required
rewriting some blocks of code or moving code from
onle module to another.

Both versions support string type variables;
however, the HP compiler (Hewlett—Packard 1982)
performs more checking on the length of the string
when a constant or string variable is assigned to
another string variable. This made it necessary
to change the declarations on a number of
variables and constants to satisfy the HP
compiler.

For some reason, unknown to the authors, several
Reywords differ between the two implementations.
In the Apple version 'USES' (Apple 1980) indicates
that a procedure will reference variables or
procedures from a separately compiled module.
Also, when variables or procedures within a module
are to be made avallable to external procedures,
they must be declared following an 'INTERFACE'
statement. For the HP implementation 'USES' is
replaced by 'IMPORT' (Hewlett-Packard 1982) and
'INTERFACE' is replaced by 'EXPORT'. In addition,
HP uses 'IMPLEMENT' rather than 'IMPLEMENTATION'
to specify the code section that has previously
been declared in an 'EXPORT' block.
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Apple Pascal has a feature which is not available
on HP Pdscal. In Apple Pascal, code can be
written in a compound statement following the
IINTERFACE' block. This code is executed prior
to the time the procedure is accessed by external
routines. This makes is possible to include
initialization code within the 'INTERFACE' block.
Since this feature was not available din HP
Pascal, some initialization code had to be moved
to the main line procedure.

The text, The Pascal Handbook; (Tiberghieu 1981)
is a good reference to the differences between a
number of implementations of Pascal.

2.2 Non—standard Pascal Features in Micro PASSIM

Some non—-standard features of Apple Pascal had to
be modified to run on the HP version. The
routines to read the system clock, to access the
random number generator, and to detect a key
press fell into this category. A1l of these
routines were rewritten for the HP
implementation.

2.3 Extensions Available or the HP System

The HP implementation allows a larger range of
values for integer type variables and has a much
larger address space. This makes it possible to
develop much more complex models on the HP system
without ehcountering range problems with
variables. The large address space elimindtes the
need to break procedures into small segments in
order .to get them to compile. It also allows
more active transactions, more model segments,
and more variables since these dre all memory
size dependent.

The problems encountered transporting programs
from Apple UCSD Pascal to HP TUCSD Pascal
demonstrate the need for standardization in high
level languages. Even two systems that are
advertised as 'UCSD Pascal' have a significant
number of differences that make the transporting
of programs much more complicated than need be.

3. ADVANTAGES AND DISADVANTAGES OF MICRO PASSIM

Micro PASSIM has numerous features that make it a
very useful simulation tool. Because 1t ds
interactive and easily extended to fit thé
application, it is very versatile. As we know,
howeve¥, there is no such thing as a 'free
Tunch'. Both of these features come at the
expense of increased program length and model
development time.

3.1 Interactive Debugging with Micro PASSIM

The interactive nature of micro PASSIM makes
debugging programs much easier than it is oun
batch systems using GPSS and most other common
simulation ldnguages. The ability to halt the
simulation run at any point in time 1is very
useful while debugging a model. Orce the
simulation has been suspended, information about
the model and the accumulated statistics can be
displayed. While the simulation is suspended, it
is also possible to change the order in which
transactions will be processed and the values of
all model parameters. This can also be helpful
in validating the performance of the model.

Debugging and validating the wmodel is also
sinplified by the built-in 'Debug' facility.
From the main menu the user can énter the Debug
meau. This menu allows you to gelect the type of
information you wish to have displayed while the
simulation is running. At the '0' level mno
information 1s displayed. Levels 1 through 12
display information reldted to the execution of
the simulation. Two features the authors found
wost useful were the single transaction trace,
which displdys relevant iInformation about a
transaction each time it changes state, and the
display of each change of state by every
transaction in the system.

3.2 Extending Micro PASSIM

Micro PASSIM can eésily be extended by adding
more Pascal procedures. We found this extremely
valuable for two reasons; first, it was possible
to include rather complicated logic within the
model to alter the flow of transactions through
the model (see Figure 4) and second, collecting
statistics other than those predefined in the
standard system was reldtively easy.

3.3 Disadvantages of Using Micro PASSIM

The major disadvantages to using mlcro ‘PASSIM
rather than GPSS or some other sinmulation
language are that it requires a great deal more
code to develop a model and moderate to advanced
programming ability in Pascal is required. For
example, we developed a simple  model that
simulated the flow of Jjobs through a computer
system which had multiple coinpilers, debuggers
and run time cpu's. Implementation of the model
requived over 400 lines of Pascal code. The
equivalent GPSS model (with fewer capabilities)
required about 20 lines of code. The NIU
described in this paper required o6ver 1000 lines
of code; a similar GPSS model, with fewer
capabilities, required about 60 lines of GPSS
code.

It must be pointed out, however, that the micro
PASSIM simulation gave statistics that were not
avalilable in theé GPSS model and part of the
additional code was written to support the
interactive features of micro PASSIM which are
not available in GPSS. To help ease the pain of
writing rather large Pascal programs when
implementing a model in micro PASSIM, the author
provided a module called a template. This module
contains blocks of comments that show which
procedures the users must write. It also
includes the c¢ode necessary to initiate the
simulation.

In summary, micro PASSIM models are longer and
more difficult to write than those in GPSS but
they can provide more information and are more
convenient to modify and run.

4. DESGRIPTION OF THE NIU

In this section we describe the network interface
unit (NIU)Y thdat is the subject of the simulation.
The general function of the NIU is specified,
followed by a description of its intended
operating environment, an overview of its
architecture, and then a description of how the
NIU operates.
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Figure 1:* Network Interface Unit DIAGRAM ’

4.1 Function of the NIU

The main function of the NIU is to allow a host
(DTE) to communicate with a local area network
(LAN). The NIU provides layer 1 and 2 services
of the IS0 reference model for 0SI (Tanenbaum
1981). - Roughly speaking, the NIU has to pass
packets (a stream of bytes delineated by a header
and trailer) between the host and the LAN in both
directions. To carry out this function the NIU
has to provide buffer space for packets destined
from the host to the LAN as well as packets that
are addressed to the host coming from the LAN.
This buffering must be transparent both to the
host and the LAN, thus the NIU must have the
intelligence to manage buffer memory. The NIU
must provide error detection capability to ensure
that faulty packets are not passed to the host.
The NIU also has to recognize broadcast and
multicast addresses, as well as to recognize and
correctly respond to certain control packets.

4.2 Operating Environment

The host:-is assumed to be a Hewlett Packard (HP)
minicomputer capable of fairly high speed data
transfer (2M ©bits/sec) although any device
capable of communicating via the Hewlett Packard
Instrumentation Buss (HPIB) Protocol could serve
as the host.

The LAN is assumed to be an Ethernet (Xerox 1980)
capable of 10 M bits/sec data rate operating
under the CSMA/CD control wmethod (Xerox 1980).
The NIU is not directly attached to the LAN.
There is a standard Ethernet transceiver (TCVR)
located between the Ethernet coaxial transmission
cable and the NIU. The transceiver has the
function of signal conversion as well as
detecting the current state of the Ethernet and
sensing other necessary electrical signals (Xerox
1980).

4.3 NIU Architecture
A block diagram of the major components of the

NIU is given in Figure 1. The Intel 82586 is an
intelligent local communication controller (LCC)

(Intel 1983, Intel 1982a). It provides most of
the functions of layers 1 and 2 of the 0SI model
including framing, error detection using the CCIT
V.41 CRC polynomial, and single node, multicast,
and broadcast addressing. The LCC uses a shared
memory based architecture. The 82586 and the CPU
(the 80186 in Figure 1) communicate through a
shared memory (the RAM in Figure 1) using chained
fixed sized buffers to store the inbound/outbound
packets.

The Random Access Memory (RAM) is used as the
buffer to store inbound/outbound packets until
they are ready to be processed. It consists of a
fixed size partition with one part storing
packets bound from the host to the LAN (Transmit
buffers) and the other part buffering packets
being received from the LAN and bound for the
host (Recaive buffers).

The Backplane Interface Chip (BIC) is a standard
HP communications product, capable of using the
HPIB protocol. 1Its purpose is to receilve/send
packets from/to the host.

The read only memory (ROM) contains the firmware
that controls the operation of the NIU. The
non-volatile random access memory (NOVRAM) is
used to store WIU configuration information. The
ROM and NOVRAM are not part of the simulation.

The NIU contains two separate busses as shown in
Figure 1: one 1s used for direct memory access
(DMA) to/from the BIC, while the other is used to
implement the shared memory architecture between
the 82586 and the 80186 described above.

The Intel 1APX 186 (80186 in TFigure 1)
microprocessor (Intel 1982b) 1s used to control
all other components of the NIU. It is a medium
performance (8MHz) highly integrated 16 bit
general purpose microprocessor. Its main
functions include controlling the 82586 LCC and
the shared wmemory space (RAM), (MG586), as well
as carrying out direct memory access (DMA)
transfers from the BIC to RAM (DMABM) and DMA
from the RAM to the BIC (DMAMB). Its other
functions are of no concern to the simulation.
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The Ethernet transceiver and the Host are
represented in the simulation simply as sources
and sinks for the inbound and outbound packets to
be processed by the NIU.

4.4 NIU Operation

In order to implement the functions described in
Section 4.1, the NIU carries out the operations
described below. We will consider ounly the two
main functions of the NIU: tramsmit, transfer a
packet from the host out over the LAN; and
receive, transfer a correctly addressed,
error~free packet receilved from the TAN to the
host.

To transmit a packet, first the BIC sends an
interrupt to the 80186, the interrupt service
routine (ISR) in the 80186 iniltiates a DMA
transfer to move the packet from the BIC to the
transmit buffers (or tells the host to wait if
no buffers are available), next the 80186
commands the 82586 to transmit this packet to the
LAN (passing needed buffer address informatiom),
and finally the 82586 gets the packet from the
transmit buffers and tramsmits it through the
transceiver (TCVR) out over the LAN. See Figure
4 for details. :

To receive a packet, first the 82586 interrupts
the 80186 to notify the beginning of packet
reception, the 80186 ISR responds by initiating a
DMA transfer of the packet into the recelve
buffers. Next the 82586 logic checks the packet
for errors and also to see if the whole packet
was able to fit into the available receive
buffers. TIf an error-free complete packet has
been received, the 80186 is notified of this (via
an interrupt) wand the ISR initiates a DMA
transfer from the receive buffers to the BIC,
which in turn sends the packet to the host. If
an incomplete or erroneous packet was received,
the receive buffers are returned to the pool of
free buffers and the packet is counted as a lost
packet. This assumes that the layer 2 protocol
ensures that the lost packet will be
retransmitted by the sender after it times out
for the lack of an acknowledgement.

5. DESCRIPTION OF THE NIU MODEL

In this section we describe the NIU simulation
model. Note that the designers of ‘the NIU have
nicknamed it the XXXXPEDE (XXXX = centi or milli)
thus explaining the model name on the output. We
will discuss the purpose of the simulation,
assumptions and limitations, an overview of the
model, the transaction flow diagram, the model
coré, the model template, and f£finally describe
the development effort required to implement the
model.

5.1 Purpose

>

The decision to build a simulation model before'

the design phase of the XXXXPEDE had been
completed was made for at least the following
reasons:

1. to provide the designers with some design
guidelines,

2. to provide an estimate of the performance
to be expected from the XXXXPEDE
(including lost packet statistics under
various traffic loads),

3. to provide an estimate of component
utilization (to see, for example, if the
80186 could be expected to perform
additional functions), and

4, to provide specific information about the
choice of memory (RAM) size and memory
partitioning parameters.

5.2 Model Assumptions

Since many XXXXPEDE design choices were still
undecided when the simulation model was designed,
and to allow for a reasonable size first version
of the model, the following assumptions were used
during model comstruction:

1. The buffer memory (RAM) is to be
subdivided into two dedicated parts:
receive buffers and transmit buffers.

2. Each of the above mentioned memory
partitions comsists of a pool of fixed
size buffers (not necessarily of the same
size for the two portions).

3. TIn case of contention between recelve and
transmit packets at any of the XXXXPEDE
resources, the receive packet is to
receive higher priority (since the host
is easier to ‘choke off').

4, If a receive packet cannot be correctly
processed because of insufficlent buffer
space, it is considered lost, and
scheduled for retransmission.

5. 1If a transmit packet cannot be correctly
processed because of insufficient buffer
space, then the host will be 'choked off’
(using HPIB flow control) and the packet
will be queued in the host's buffers.

6. Various packet sizé and processing delay
parameters were specified as constants.

7. The packet stream from both sides
consists of a mixture of continuous (file
transfer) transmissions or of 'random'
(burst mode) transmissions consisting of
a specified mixture of 'short' and 'long'
packets: The packet stream from the LAN
can have a different mixture, packet
length, and distribution parameters than
the packet stream coming from the host.

8. The internal busses of the XXXXPEDE are
fast enough to handle all required DMA
and control traffic, therefore bus
contention does not have to be modeled.

9. The 80186 CPU is fast enough to handle
its three main functions (manage the
82586, DMA from memory to BIC, DMA from
BIC to memory) concurrently.
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5.3 Limitations

The first version of the model (the subject of
this paper) suffers from the following
limitations:

1. There are no packets generated that
contain errors.

2. The possible unavailability of Ethernet
(channel contention) is not included.

3. The overhead for the recognition of
multicast/broadcast addressed packets is
not included in the model.

4. The possibility of packets that were
transmitted from the Host to the LAN
being lost is not included in the model.

5. The possibility of a collision and the
subsequent use of the CSMA/CD exponential
backoff algorithm is not included in the
model.

6. There are other hardware/software details
that are omitted from the model.

These limitations were acceptable because not
enough hardware/firmware details were known
during the model design phase, and also they
allowed for an easier debugging/validation phase.

On the other hand, the model was designed so that
future expansion to remove some of the above
limitations could be easily incorporated into
more refined versions of the model.

5.4 Model Overview

The model consists of two segments. One segment
models the flow of transactions (packets) moving
from the host to the LAN, while the other segment
models the flow from the LAN to the host. Thus
the model has two distinct transaction types
which share some common storages.

The model time unit was decided to be a micro
second.

The model uses the following storages (see Figure
1):

1. XC586 - the 82586 chip,

2. XMBUF -~ the transmit buffer space -
capacity depends on memory size,

3. RCBUF -~ the receive buffer space -
capacity depends on memory size,

4, BIC - the BIC chip,

5. DMAMB - the portion of the 80186 CPU
controlling DMA from the RAM to the BIC,

6. DMABM - the portion of the 80186 CPU
controlling DMA from the BIC to the RAM,
and

7. MG586 - the portion of the 80186 CPU used
to control the 82586 chip.

Note that our assumptions (Section 5.2) allow the
80186 to be modeled as three separate storages
with dedicated functions. Also, our assumptions
allow the omission of the ZXXXXPEDE internal
busses from the storage list.

The major model parameters are memory size,
fraction of memory for receive and transmit
buffers, LAN and host data rates, retry delay for
lost packets, and several variables controlling
packet sizes and packet stream mix (different for
the host and the LAN), and bandwidth utilization
for both the host and LAN.

This list is not exhaustive. TFor a complete list
of all model parameters, see Figure 3. During an
interactive simulation run, the user is allowed
to change the values of any or all of these
parameters.

The packet stream is generated by a user defined
function, according to the specifications
described in Section 5.2. A nice feature of
micro PASSIM is that it allows easy incorporation
of user defined functions into the model.

The operation of the NIU was described in Section
4.4 in a cursory fashion. For a detalled
description of how transactions move through the
model, see the transaction flow diagrams in
Figure 3.

The model core implements the transaction flow
diagrams (Figure 3) in micro PASSIM. Figure 4
shows the model core. Note how Pascal statements
are mixed with GPSS type blocks. It is this
flexibility that makes micro PASSIM a powerful
simulation tool.

In order to get a complete executable model,
every section of the 'template' model has to be
completed. The template contains the following
sections:

User Globals - model parameters, storages,
and auxiliary variables,

User defined functions and procedures,

Model Defaults - assigns reasonable values to
all model parameters,

Model Menu ~ displays values of all model
parameters and allows user to
interactively change the value of any
parameter,

Model Description ~ a help facility for the
user's benefit,

Model Initialization ~ clears the model and
initializes various model data
structures,

Model Reset — allows user to reset simulation
statistics without exiting the program,

Statistics ~ prints all model statistics
including 'automatic' statistics (queue
and storage statistics) as well a$ user
defined statistics (Figure 5), and the

Model Core - described above (Figure 4).
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MODEL HRARDWARE/SOF TWARE PARAMETERS

aEREE SEUANEENNGEERNGRN REREENEEEEE |
MEMORY SIZE . 16384 BYTES
FRACTION OF MEMURY FOR RECEIVE BUFFERS » 0.875
FRACTION OF MEMORY, FOR TRHNSMIT BUFFERS = 0.125
THERE ARE 56 RECEIVE BUFFERS oF 256 BYTES EHCH .
THERE HRE 8 TRANSMIT BUFFERS OF 258 BYTES EACH

’ETHERNET DATA RATE = 1.25 BYTES/MICSEC
BIC(HDST) DATA RATE= 0.25 BYTES/MICSEC

RETRY DELAY FOR LOST PACKETS (ENET) 20000

100
100

TIME JO SET UP Brc, TRHNSNISSIUN -
TIME TO SET UP EMET TRANSMISSION =
TIME 70 RCQUIRE BIC .
TIME TO PROCESS HOST INTERRUPT .
TIME 70 PROCESS ETHERNET INTERRUPT =
TIME TO SET UP BIC DMR -
TIME TO0 FINISH BIC DMA -
TIME TO SET UP 586 DMA = 5
TIME TO FINISH. 586 DMA: -
TIME TO RCOUIRE TRANSMIT BUFFER =
TIME 70 RELEASE TRANSMIT BUFFER -
TIME TO RELEASE RECEIVE BUFFER -
ETHERNET RECEIVE PRIORITY .
BIC(HOST) TRANSMIT PRIORITY -

MODEL TRAFFIC PRARAMETERS

SEERN GANWNUY RmSEaEBEww

105 MINIMUM 1500 MAXIMUM
108 MINIMUM 256 MANIMUMN

ETHERNET PACKET SIZ2E(BYTES)
BIC(HOST) PACKET SIZE(BYTES)

RATIO OF CUHTINUDUS‘NDDE/BURST MODE PHCKEls
RATIO UF LONG/SHORT PACKETS IN BURST MODE

= ,0.500
I 1
'AVERAGE LENGTH OF SHORT PACKET FROM ETHERNET = 406.90

AVERAGE LENGTH OF SHORT PACKET FROM. BIC(HOST) . «
AVERAGE # OF PACKETS IN CONTINUBLUS MODE 0N ETHERNET
HVERHGE # OF PACKETS IN CONTINUOUS MODE ON BIC(HOST)

AVERAGE MUMBER OF BYJES PER PRCKET FROM ETHERNET " 8
AVERRGE NUMBER OF BYTES PER PACKET FROM BIG(HOST) = 65.
AVERAGE PACKET INTERARRIVAL TIME FROM ETHERNET. -
AVERAGE PRCKET INTERARRIVAL TIME FROM BICCHOST) -

‘NUMBER OF ACTIVE NODES ON ETHERNET w0
ETHERNET TOTAL UTILIZATION » 0,3
xxxxxptnt's UTILIZATION OF ETHERNET: XFER CAPRCITY » 0.3900
KXXXXPEDE/S UTILIZATION OF BICC(HOST) XFER CRPACITY = 0.3

MODEL DEBUG PARAMETERS

PRINT PACKET IQFDRMHTIQN ¢ FALSE

PRINT BUFFER INFORMATION ; TRUE

PRINT ALL. INFO (IN STATS) ¢ TRUE
A R

FIGURE 2: MODEL PARAMETERS

The complete implementation of ‘the model required
about 1000 lines of Pascal Tcode, including
comménts. This does mnot include the library
modules of the miecro PASSIM system that have to
be linked to the executable (compiled) form of
the  model. The  complete  design  and
implementation and validation of the wmodel
required about 80-100 hours.

6. RESULTS OF NETWORK INTERFACE UNIT SIMULATION

This section presents a degcription of the
statistics that were gatlhered when the moael was
run and a display of some of the data that was
gathered from numerous runs of the simulationm.

6.1 Micro PASSIM Result Printout

The accumulated statistics for the current run of
the simulation can be displayed ‘or printed
whenever the micro PASSIM main menu is displayed
on, the screen. The printout for a typical run is
shown in Figure 5. Some of this information. is
31milar to what vyou would see from a GPsS
simulation. The QUEUE statistics and STORAGE
utilization fall into this category.

Tom ll’aydé‘, Larvy Wear

The portion of‘ the output 1abeled 'PACKE’
STATISTICS' however is unique to the model Ve
designed. The statistics displayed héré are ones
that we felt would be useful for‘our purposes.
We were responsible‘for generating the statistics
and fo displaying them in thé fotmat shown.

6.2 Model Performince and Bus Ytilization

Figure 6 shows how the model responded to various
levels of Ethernet utilization.‘ In this figure,
we chose to plot numbet of padkets that had to be
retransmltted (Lost Packets), total data
throughput, (Data Rate), and utilization of
trausmit and receive buffers, XMBUF, and RCBUF.
For this figure, the buffer memory 81ze was 8192
bytes, the BIC utillzation was 0.40 and the ratio
of receive to transmlt buffers was 7:1. The
maximim data rate for the BIC was 2 M bits/sec
and for the Ethernmet was 10 M bits/Sec for all
the cases described in this sectiéii.

The figure shows one result which was expected;
as the data rate of incoming packets from
Ethernet approaches the maximum rate at which
data can be transmitted to the BIC, the number of
lost packets increases, drastically. It also
shows that the transmit buffers are utilized much
more hedvily than the receiye buffers. This is
due id part to the fact that emptying receive
buffers was given higher priority than emptying
transmit buffers and therefore data tended to
remain in transmit buffers for a much longer
period of time.

Thé hext graph Figure 7, shows how the model
responded to changes in incoming packet rates
from the host, BIC utilization. This term is
somewhat misleading because the NIU can halt the
actual transmission of data from the host
computer through the BIC by sending a 'mot
available back to the , host. Since this
transmission from the host to the LAN can be
choked off by the NIU, there is no significant
increase in lost packed count and only a small
increase in receive buffer utilization while
transmit buffers utillzation increases to nearly
100 petcent. Total data rate also increases and
approaches the maximum of the BIC.

6.3 Modél Performance and Buffer Memory Size

Figure 8 shows how the NIU performs with various
amounts of buffer memory from a minimum of 4096
bytes to a meximum of 32,768 bytes. For this
figure the Ethernet uytilization was set to 0.18
and the BIC utilization to 0. 40. Two of the more
interesting results that can be Seen are that the
data trausfer rate remainé constant and theré is
a linear decrease in receive buffer utilization
as memory size increases.

6.4 Execution Time of Model

The execution speed of the simulation language is
often quite impoitant if a model is going to be
run many times. On the HP 9836, each run of 3
seconds of simulated time required about two
minutes of real time. In a typical Tun about 650
packets Wwere trdnsmifted from Ethernet and 1750
requests were generated from the Host. The
resolution of the simulation clock was 1 micro
second and the Tength of most of the ADVANCE's
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FIGURE 3: NIU TRANSACTION FLOW DIAGRAM
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3] MODEL SEGMENT ONE (HOST/BIC) *)

STRART! BEGLH
GEMERRTE (02 ; PACKGEN(HPY, XMFRIORITY,SKHCLUCK(CLUSE TINE);
PAR{3) i« PRCKETSIZE; (¥ PACKET SIZE ASSIGNED BY PHCKGEN L
PHRH] := PAR(J] DIV KMBSIZE; (% NUMBER OF BUFFERS REQUIRED- »#;
REM 1+ PRR[3) 'MOD XMBSIZE;
IF REM>O THEN PAR([41 := F‘HRHI +1;

N

021 ENTER(03 1,BIC);

03: RDVANCE (04, HOST_INTRUPT);

043, LERVE(OS, 1,BIC)]

054 ENTER(OS,PART4], XMEUF)§

061 ADVANCE (07, ACOXMBUF )}

07: ENTER(08,1,DHABM);

oa: nnvnncz(os SETUPBICDNAY

09: ENTER{10,1,BIC)}

10: RDVENCE(1) FﬁR(JI + DATA_RATE(HP] );

f1: LEAVE¢12,1,BIC)

2: ADVANCE(13, Fxnstarcnnn);

3t LEAVE(14,1,DHABM);

4: ENTERC15,1,1GS86);

5i ADVANCE (16, SETUPENXM);

61 LERVE(17,1 ncses),

7: ENTER(18,1,%C58

8: RDVANCE(19, PHR(JJ/DHTH RATE (EN});

9: LEAVE(20,1,XC586);

nuvnncstzt " RELXMBUF 13

LERVE(22,PAR (43, XMBUF )

: BEGIN
TOTBYTES_HP :e TOTBYTES_HP + PARIJ)}
TOTPACS_HP 1= TOTPRCS_HP + 1;
TERMINATEC1);

END;}

[§] HODEL SEGMENT THO (ETHERMNET) LY

5TART2: BEGIN
GENERRTE (52, PACKGEN(EN) , RCPRIGRI TY, STMCLOCK(CLOSE _ TIME)}
PAR(3} 1= FHCKETS 2E; (X PACKET SIZE ASSIGNED BY PACKGEN *
PAR(4) PRR(3) DIV 'RCBSIZE} (% NUMBER OF BUFFERS REQUIRED #
PARIS] [H (% COUNTS MUMBER OF RETRIES TO RECEIVE PACKET #
PARIE) e 01 (% COUNTS NUMBER OF BUFFERS ACQUIRED BY PACKET #
REM t« PRR(31 MOD 'RCBSIZE}
IF REM>O THEN, PRAR{4] t= PAR(4) + 13
NX_BLOCK 1» 52
END;
32 ENTER(SS 1,XC586);
$3: HDVHNCE(34 ENET INTRUPT)]
S4: LEAVE(SS,1,XC586);
S35t ENTER(56,1,MG585)}
562 HDVHNCE(ST SETUF!UEDHH)}
371 LERVE(38,1,MG586)}
581 ENTER(!S,!,XC!SE)X
$9: BEGIN
MOREBYTES := TRUE;
WHILE ( RCBUFCNT ) 0 ) RAND MOREBYTES DO
BEGIN
ENTER(EO, },RCBUF);
RCBUFCNT ¢+ RCBUFCHT - i
PRR{6] := PARI(E] + 13 (% COUNT CAPTURED BUFFERS #)
MOREBYTES {» ¢ PAR(4]1 ) PARIE] )}

END;
ABVANCE (80, PAR (31 /DATA_RATE (EN] )}
END;
BEGIN
ﬂnvancz(ss FINLSHSBEDHRA) ;
IF PAR{41 5> PAR(S]1 (% BUFFERS REQUIRED > BUFFERS ACOUIRED? %)
THEN MX_BLOCK e 81j (% THE PACKET WAS LOST »)
03

80

Figure 4:

was between 5 and 150 microseconds. Because of
the relatively short run times, it was feasible
to make numerous changes to the model to examine
the response under many different conditions.

7. SUMMARY

This paper described the HP 9836 implementation
of micro PASSIM and its application to modeling
an NIU. To implément the model, first the
authors had to transport the micro PASSIM system
from Apple II to HP9836 in order to bé able to
use the 1 megabyte memory capacity of the HP
9836.

While the current version of the model has
certain limitations, even in this form it has
proven to be a useful and effective model of the

(w HANDLE A LOST PACKET ®)

61: ADYANCE(E2,RELRCBUF);

62! BEGIN
RCBUFCNT 1s RCBUFCNT + PAR(E]}
LERVE (64, PARTE],RCBUF )}
PAR[S} = PRR[!I + 13 % COUNT TIMES PACKET SEMT OM ENET 9
PAR(E} 4= 0 {® RESET BUFFERS ACOUIRED COUMTER 1
LOSTEYTES != LOSTBYTES + PAR(J]}] (% COUNT NUMBER OF LOST BYTES)
LOSTPAC te LOSTPAC + 1} (% COUNT NUMBER OF LOST PRCKETS I

END;

64! LEHVE(GS 1,XC3861;

(L RESCHEDULE 17 FOR LATER ETHERNET TRANSMISSION %)

63t SCHEDULE(%2, RCPRIORITY, STMCLOCK+RETRYBELRY, CUR) }

(% HANDLE A CORRECTLY RECEIVED PACKET %)
66: BEGIN
IF PRR(S] = O

THEM (% PACKET WAS RECEIVED ON FIRST TRY W)
GOT_THROUGH_FIRSTTRY te GOT_THROUGH_FIRSTTRY + 1

ELSE (% PACKET WAS SENT MORE THAN ONCE BEFORE RECEPTION #)
BEGIN
RETRIEDPACKS 1+ RETRIEDPRCKS + 13
RETRYTOT +» RETRYTOT + PRAR(31}
END}

LERVE(87,1,XC386);

EMD;
87 ENTER(SB 1,DMANB) ;
68: RDVHNCE(S! SETUPB!CDnﬂ),
69: ENTER(70,1,BIC);

703 BEGIN
HPXM_DELAY te SETUPHPXHM 4 (% TIME 70 2?2 %)
HPBUSDELAY + (® TIME TG ? #)
PAR(3} ~ DATA_RATELHPI} (% TIME TO XFER DATA *)
RDVANCE €71, HPXM_DELAY)
D3

3
71: LEAYE(?Z,1,BLC)
72: ROVANCE(73y r:nsta:cuna);
731 LEAVE(74,1,0HRMB);
74: RDVANGE (75, RELRCBUF) 3
78t LERVE(76,PARL41,RCBUF);
761 BEGIN
RCBUFCNT  te RCBUFCNT + PRRI41;
TOTBYTES_EN :+ TOTBYTES_EN + PARI31}
TOTPACS_EN 1= TOTPACS_EN + 1)
TERMINATE (1)}
END;

Micro PASSIM Model Core

XXXXPEDE NIU. The authors are currently
expanding the model to remove some of the
limitations described in Section 5.3.

The micro PASSIM system has already proven itself
to be a powerful simulation tool, but it does
have room for improvement. Some of the desirable
expansions include graphics output, file input of
various model configurations, the ability to run
the sysggm using command files, and the
implementation of more GPSS blocks. ‘The author
of the micro PASSIM system is currently working
on several of these enhancements.

In conclusion, the authors have fouand micro
PASSIM to be a powerful, interactive, efficient,
easy to customize, and ‘'infinitely' expandable
simulation tool.
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unwsunmmzznzans=xnusS I M UL ATION STARATISTIC Seswesuannnavanwsnans

HP 98xx uPASSIM P1.0
XXXKXPEDE SIMULATION MODEL V2.0
September 1983

SIMULATION HALTED
AT STOP TIME

TERMS REL: 2074 SIMCLOCK RBS:3000000,00
TERMS MAX: $0000 SIMCLOCK REL:3000000.00
XACTS NOW: 388 STOP REL:3000000.00
XACTS MAX: 888 CLOSE REL:3000000.00
SEED RND: 1? SEED SET: Q.00
REAL TIME:12168.00
asssssssnsnsszansznwnnsunzwnnna QUEUE STATISTICS ssesnnsssnsvcennexnausssssnsnns
NAME CURRENT  AVERRGE AVERAGE NUM OF 2ERO MAXIMUM  MARXIMUM
CONTENTS CONTENTS WRIT EXITS WAITS CONTENTS WAIT
BICCHIP Q 1 3.94 3089.57 3828 723 16 135S52.14
S88CHIP Q ] 0.02 22.36 2778 25914 3 1141.10
SBEMNGR Q [} 0.00 0.82 2075 2050 1 97.10
DMA_M_B Q [} 3.30 14063.18 704 153 15 55227.78
DMA_B_M Q 7 6.67 14578.82 1372 3 7 50088.00
RBUFMGR Q [} 0.00 0.00 2113 2113 [} 0.00
XBUFMGR Q 374 181.38 334585.91 1378 18 3839 642974.08
manasssnzsswssvavsnnsuanwenans STORAGE STARTISTICS sussunuauascussuccnvownanuuuun
NRME CURRENT AVERAGE AVERRGE NUM OF UTILIZATION MAXIMUM CRPRACITY
CONTENTS  CONTENTS TIME/XRCT EXITS CONTENTS
BICCHIP 1 0.88 766.88 3828 0.88 1 1
S3BCHIP [¢] 0.19 210.01 2779 0.18 1 1
. S88MNGR [o} 0.0S 67.77 2075 0.05 1 1
DMA_M_B 0 .82 3515.46 704 0.82 1 1
DMA_B_M 1 1.00 2187.18 13721 1.00 1 1
RBUFMGR 1 15.41 42867,43 703 0.28 S6 56
XBUFMGR 8 ?.93 2188.18 1321 0.88 :] 8
PACKET STATISTICS
PRCKETS GENERATED
FROM ETHERNET FROM HOST
PACKET TYPE
CONTINUBUS 238 33.5% 48S 27.74
LONG BURST 132 16.8% 355 20.2%
SHORT BURST 336 47.7% St4 52.1Z
TOTALS 704 28.86% 1754 71.4%

TOTAL NUMBER OF BYTES GENERATED
TOTAL BYTES SENT BY THE HOST

TOTRL BYTES RECEIVED FROM ETHERNET
NUM, OF PKTS. RECEIVED ON FIRST TRY
EFFECTIVE DATA TRANSFER RATE

NUMBER OF RECEIVE BUFFERS
NUMBER OF TRANSMIT BUFFERS

736137 = 2458
213638 = 1371
462874 « 203

PACKETS - AVG SIZE = 289.S
PACKETS - AYG SIZE = 155.8
PRACKETS -~ AVG SIZE = 658.8

704 100.0% OF PACKETS SENT OGN E£THERNET
225538 BYTES/SEC

56 OF 256 BYTES ERCH = 14326 TOTRL BYTES
8 OF 256 BYTES ERCH = 2048 TOGTAL BYTES

Figure 5:
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Figure 8: Performance as a Function of Memory Size
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