Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

57

REPRESENTATION AND MODELING OF
DISTRIBUTED COMPUTER SYSTEMS

Armen Gabrielian
Hughes Aircraft Company
P.0. Box 3310

Fullerton,

CA 92634

The general probiem of the representation and performance-oriented modeling

of the behavior of distributed computer systems is discussed.

A description

of an integrated System Design/Static and Dynamic Modeling (SD/SDM) tool set

is presented.

In SD/SDM, a data base organization is used for the represen-

tation of the architecture, Toad, application software and the operating

system of a distributed system.

Modeling is performed statically or

dynamically through a generic simulation model that does not require

recompilation.
briefly.

1. INTRODUCTION

A distributed computer system and data communica-
tion interfaces are common components of most
current and expected future command and control
systems. The design of such a combined computer
and communication system is a complex process
that begins with system requirements, proceeds
through systems analysis and preliminary design,
and progresses through performance modeling to
final design definition. As systems are becoming
more complex, system design consumes steadily in-
creasing manpower, computer resources and elapsed
time, jeopardizing the likelihood of producing a
proper design. The magnitude of the associated
effort requires that an integrated set of auto-
mated tools be utilized at all stages of design
and development.

In the requirements definition area, there exist
a varjety of tools such as Problem Statement
Language (PSL) from the University of Michigan,
Requirements Specification Language (RSL) at TRW,
Specification and Description Language (SOL) de-
fined by CCITT and Requirements Language Proces-
sor (RLP) at GTE Laboratories (Davis 1982),
Specialized languages such as SPECIAL at SRI in-
ternational (Levitt et al 1979) and GYPSY (Ambler
et al 1977) have been used to specify operating
systems. None of these, however, interfaces
conveniently with a comprehensive performance
evaluation tool.

In the modeling area, queueing and simulation are

CH1953-9/83/0000-0067

Applications of SD/SDM in actual projects are discussed

the principal approaches. Queueing packages such
as BEST/1 have been used successfully in a number
of commercial data centers. However, queueing
models are inflexible and there are strong 1imi-
tations on the kinds of systems that they can
model. Simulation tools, on the other hand, have
the benefit of generality but are often costly
and difficult to use. General purpose simulation
languages require extensive programming and
specialized Tanguages such as ECSS IT (Kosy 1975)
share common drawbacks of most simulation tools.
These drawbacks include the need for recompila-
tion whenever a change in a design occurs and the
difficulty of analyzing and verifying a system
definition independent of the simulation con-
text. An additional problem is that most simu-
lation tools provide no aids to the design
process itself.

Iin order to circumvent these problems, an inte-
grated set of tools called SD/SDM (System
Design/Static and Dynamic Modeling) has been
under development at Hughes since 1981. SD/SDM
provides a data base organization for system
definition and automatic means of modeling the
system behavior from the system definition. Two
kinds of performance modeling are accommodated in
SD/SDM: static analysis and dynamic simulation.
Static analysis characterizes the load in each
device, ignoring queueing delays, system over-
heads and system capacities. 1t is usually per-
formed in the early part of system design.
Dynamic simulation models the detailed time-
oriented behavior of the system and provides

$01.00 © 1983 IEEE

68 Arien Gabrielian

information about response times, operating sys-
tem overheads, queueing delays and processor
utilization.

SD/SDM is intended for use by systems engineering
personnel and, to a jarge extent, eliminates the
need for writing simulation programs. It has
been used in a number of major projects to model
the performance of systems containing up to 100
computers. Because of its ease of use and
system-oriented framework, it has reduced the
effort and time required to develop a model
definition by an order of magnitude compared to
some previous togls. In one specific case, the
entire system definition and modeling process
(static and dynamic) for a 60 computer configura-
tion was. performed within the period of one week.

A description of an earlier version of SD/SDM
appeared in (Gabrielian 1982). Section 2 of this
paper presents an overview of the current version
of SD/SDM which is significantly more powerful.
Section 3 discusses objects, processes and param-
eters and the manner in which they are used to
describe a software architecture. Section 4
defines the approach to the representation and
modeling of operating systems. Finally, Section
5 briefly reviews some of the applications of
SD/SDM and discusses present plans for its
further development.

2. QVERVIEW OF SD/SDM
The structure of SD/SDM is depicted in Figure 1.
SD/SDM contains three major components:

° Systevaesign Data Base (SDDB)
e Static Analysis Model (SAM)
o Dynamic Simulation Model (DSM)

SDDB is a relational data base implemented in the
very-high-1evel language SAS (Statistical
Analysis System). Its structure is similar to
the data bases generated through SDL (Simulation
Data Language) as described in (Standridge and

Pritsker 1982), but its use is somewhat differ-
ent. SDDB is the repository of all information
about the hardware, software and the Toad of a
system. There are currently 12 relations or
tables in SDDB, each of which is concerned with a
particular aspect of the system. For example,
the devices are defined in one table, the archi-
tecture in another, and the software and related
data are described in the remaining relitions.

The use of the SDDB concept provides several
important advantages. It provides a convenient
formalism for system definition that can serve as
a communication medium among system engineers.

It can be used to build up a system design
library, allowing components of previous systems
to be easily integrated into new designs. SDDB
is also convenient for verifying the accuracy of
a design specification prior to simulation. This
is accomplished through various configuration and
consistency/completeness reports.

The Static Analysis Model {SAM), which is also
jmplemented in SAS, computes the processing
requirements and the data traffic load of the
system, ignoring queueing delays, system over-
heads, and resource capacities. It is generally
used in the early phases of design to determine
estimates of quantities of computers and peri-
pherals and types of buses required. SAM is also
used to determine the initial allocation of func-
tions and data objects.

The Dynamic Simulation Model (DSM) component of
SD/SDM is a simulation program that models the
time-oriented behavior of a distributed computer
system. DSM is implemented in SIMSCIPT II.5 and,
because of its generic nature, does not have to
be recompiled for simulating alternate architec~
tures. DSM accepts as input an "interface file"
that is optionally created by the SAM components
of SD/SDM. The interface file is a "compilation
of the SDDB definition of the system and its Toad
in a format that can readjly be used for simula-
tion. DSM produces a variety of reports on
processor utilization, bus activity, queueing
delays and response times.

® RFP
® SYSTEM
SPEC

PAST
SYSTEM
DESIGN

- PERFORMANCE
_CHARACTERISTICS

DATA SYSTEM DESIGN

DATA BASE

STATIC
ANALYSIS

LOAD ANALYSIS

MODEL.

SYSTEM
ARCHITECTURE
DOCUMENTATION

= 11

SD/SDM

Figure 1. The Structure of the SD/SDM Tool Set

£-5880EE

Distributed Computer Systems 69

3. OBJECTS, PROCESSES AND PARAMETERS

The concept of an "object-oriented* operating
system has received much attention in the litera-
ture in recent years (e.g., see the papers by
Jones (1978) and Rattner and Cox (1980)). 1In
SD/SDM, the notion of "object" is used as a uni-
fying term to designate all the software elements
in a computer system. Currently, this includes
processes, queues, semaphores and data objects.

A "process" is an application or operating system
program. An instantiation of a process is a
“task."” Thus, in case a process is reentrant,
there can be multiple active tasks corresponding
to the process. "Queues" of various disciplines
(LIFO, FIFO, etc.) are available for use by the
operating system for scheduling tasks, responding
to requests or as I/0 buffers and message buffers
for communication among tasks. "Semaphore"
objects are used for task synchronization and
"data objects" consist of files, tables, data
bases and other types of data structures.

The notion of "parameter" is a key element that
allows transfer of information among objects. A
parameter is a structured variable which is used
to control the behavior of processes. A "param-
eter set" can optionally be associated with each
object and each message generated by a task. The
parameter set associated with a process acts as
its internal variable set. The parameter set for
another type of object or a message acts as a
description for jt. Thus, a parameter set is a
vehicle for separating the size of an object or
message and the relevant attributes of it that
are needed for performance-oriented decision
making. For example, although the structure of a
message can be defined in the SDDB component of
SD/SDM, for simulation purposes it is considered
as a string of bits. To compute throughput or
traffic on a bus, the Tength of the message is
all that is necessary. In order not to lose re-
quired information, a parameter set can be
attached to the message. This parameter set
rides freely with the message, i.e., it does not
take up any additional capacity on the bus.

Since a parameter in the parameter set may be a
complex function of the actual message, the abil-
ity to represent it independently, greatly sim-
plifies the definition of processes that ‘manipu-
late messages.

Figure 2 represents a typical flow of control
among processes and an "action sequence" within a
process. In Figure 2, SAl is a switch-action or
operator transaction that sends a stream of data
of size D1 and a parameter set P1 to the process
PROG2. Likewise, the process PROG1 sends D? bits
and the parameter set P2 to PROG2, PROG2, in
turn, calls PROG3, passing to it D3 bits and the
parameter set received from above (indicated by
tx0), Within a process, high-Tevel "action-
statements" {e.g., READ, WORK, CALL, and varia-
tions of the if-statement and while-statement)
are available to define what a process does. 1In
addition, since actions are qualified by determi-
nistic and probabilistic conditions, partly de-
fined by the parameters, a great deal of freedom
is available in defining the flow of control both
within and among processes. For example, most
data base management functions and table-driven
software can easily be represented through the
use of parameters.

L SAI—I

(D1, P1)

[_rrost |

(D2, P2)

READ DB1

WORK W
L 4
L]

CALL PROG3
&
(D3, %)

| PROG 3 I

PROG 2

Figure 2: Typical Process Flow of Control in SD/SDM

Beyond the definition of objects and how they
interact with each other, one must define where
they reside and what the load is. Objects that
are allocated to more than one device are defined
only once in SD/SDM. This allows convenient
analysis of alternate architectures involving the
reallocation of objects. The load is defined in
terms of an initial start time and an inter-
arrival distribution for transactions like SA1 in
Figure 2. Various interarrival distributions can
be accommodated in SD/SDM.-

4. OPERATING SYSTEM MODEL

One of the basic goals in the design of the cur-
rent version of SD/SDM has been the capabitity to
model a variety of operating systems. This is
accomplished through a kernelized operating sys-
tem model. Figure 3 shows the relationship of
the kernel and the remainder of the operating
system model. The kernel, which is the uninter-
ruptible core of the operating system, and the
"basic 0.S." are hard-coded in the Dynamic Simu-
lation Model (DSM) component of SD/SDM. These
functions can be controlled to some extent
through parameters which allow, for example, the
overhead associated with operating system rou-

C-5BBOEE

EXTENDED O.S.

BASIC O.S.

EXTENDED
KERNEL

I-G880€E

Figure 3: SD/SDM Operating System Model

70 - Armen Gabrielian

tines to be defined by the user. A further
degree of control is achieved through the speci-
fication of an "extended kernel" and "extended
0.S." by the user. This provides a wide range of
choices in defining task scheduling and dispatch-
ing strategies, 1/0 handling, memory management,
interprocess communication and other aspects of
an operating system.

The definition of operating system routines are
hWandled in the same manner as application
processes. Thus, there is no need for the
SIMSCRIPT compiler even for interpreting the
actions within operating system processes, There
is also the provision to integrate new SIMSCRIPT
modules into the model. For these, of course,
the compiler has to be used. The only other
reason that the compiler might be necessary, is
to parse an automatically created program for
evaluating mathematical expressions.

The key problems that had to be resolved in the
design of the SD/SDM operating system modél were
the relationship of the kernel to the remainder
of the operating system and the exchange of
information between SIMSCRIPT arnd the action lan-
guage of processes.

An important benefit of the System Design Data
Base (SDDB) component of SDYSDM. arises in the
ability to store the specifications of various
operating systems in a design 1ibary. Thus, once
an operating system is defined, gthers may invoke
it with a single reference to the appropriate
data base. Standard bus protocols such as token
passing or carrier sense multiple access with
collision detection (CSMA/CD) can also be
specified by indicating the appropriate
predefined designation for the desired protocol.
Thus, the performance of a system using alternate
operat;ng systems and bus protocols can easily be
studied.

5. APPLICATIONS OF SD/SDM

SD/SDM has been used for the specification and
performance evalution of the distributed computer
systems associated with a variety of command and
control systems. Because of its table-driven in-
put format, very little training has been found
to be necessary to begin using it. A highly in-
teractive interface to the SDDB data base is
under development now that will make it even
easier to use.

As far as the validation of the SD/SDM simulation
results is concerned, comparison with actual data
in one major project showed maximum error of 6%
in processor utilization. More detailed
experiments are planned to evaluate the
capability of the new operating system model to
accuratély reflect the behavior of actual |
systems. Finally, it is expected that once a
sufficiently rich design libary has been
developed, SD/SDM will become a very powerful
tool for the design, as well as, the performance
evaluation of distributed computer systems.

REFERENCES

Ambler AL, et al, GYPSY: A language for specifi-
cation and implementation of verifiable pro-
grams, Proceeding$ of an ACM Conference on
Language Design for Reljable software (1977)
1-10. '

Davis AM, The design of a family of appiication
oriented requirements languages, Computer
Vol. 15 (1982), pp. 21 - 28. ’

Gabrielian A, SD/SDM, a System Design and Static/
Dynamic Modeling tool set, Proceedings of the
Seventh Annual SAS Users Group International
Conference (1982) 44-48.

'

Jories AK, (1978) The object model: A conceptual
tool for structuring software. In Operating
Systems, An Advanced Course, R. Bayer, et al
Teds.), Springer VerTlag, pp. 8 - 16.

kosy DW, The ECSS 11 Language For Simulating
Computer Systems, Rand Corp. Report R-1895-GSA
(1975).

Levitt KN, Robinson L, Silverberg BA, Writing
simulatable specifications in SPECIAL, The Use
of Formal Spec¢ification of Software, H.K. Berg
and W.K. Giloi, Editors {1979), pp. 39 - 78.

Rattner J, Cox G (1980), Object-based computer
architecture, Computer Architecture News, ACM
SIGARCH Newsletter, Vol. 8, No. 4, 4-11.

Standridge CR; Pritsker AAB, An Introduction to

the Simylation Data Language, Proceedings of
the 1982 Winter Simulation Conference (1982)
pp. 617 - 6i6.)

