Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

631

AN IMPORTANCE SAMPLING SCHEME FOR SIMULATING THE DEGRADATION AND FAILURE
OF COMPLEX SYSTEMS DURING FINITE MISSIONS*
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The variance reduction technique of path-splitting is applied to reliability

analysis of complex systems.

Two approaches are given.
are split into a fixed prespecified number of branches.

In the first, paths
In the second, a

sequential procedure is used to estimate the number of branches which will give

the maximum variance reduction.

The method is il1lustrated on a simulation of

a simplified model of a fault-tolerant computer system. The estimated vari-

ance reduction ranged from 36% to 61%.

1. INTRODUCTION

Reliability estimation for modern complex sys-
tems can be quite difficult and frequently ana-
Tytically intractible. These systems often have
redundancy and an associated capability for de-
tecting component failures and reconfiguring
themselves in order to continue functioning.
Simulation is a natural approach to the problem
of reliability estimation for these systems be-
cause of their complexity. However, the redun-
dancy and capability for reconfiguration found
in these systems are for achieving high reli-
ability; thus we are typically faced with the
problem of estimating system failure probabil-
ities of .0001T or less. If a simulation
approach is taken, it is clear that some vari-
ance reduction techniques must be used in order
to make the approach feasible.

This paper Tooks at the importance sampling
scheme of path-splitting for simulation of the
degradation and failure of complex systems dur-
ing missions of fixed finite duration. The

idea of path-splitting dates from the early days
of Monte Carlo analysis. The purpose of this
paper is to make a preliminary assessment of the
technique's value in reliability estimation.

We shall use a model of a simplified fault-
tolerant computing system as a test case. This
system is described in Section 2. The basic
idéa of path-splitting is described in Section
3. The related statistical analysis is given

in Section 4. A crucial design parameter in
this sampling scheme is the number of branches
into which a path splits.
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In Section 5 a sequential procedure is described
for dealing with this problem. Some of the de-
tails of how the simulation was implemented are
presented in Section 6 (including some additional
variance reduction). In Section 7 we show the
performance of different sampling plans used in
the simulation of four different cases of our
fault-tolerant computer systems. We conclude
with a summary in Section 8.

2.- A FAULT-TOLERANT COMPUTER EXAMPLE

We shall illustrate the general technique of the
path-splitting variance reduction technique
applied to reliability estimation of complex
multi-component systems over finite missions by
considering a specific example of a fault-
tolerant computing system. Fault-tolerance is
used to achieve high reliability; see Hopkins,
et al (1978) and Wensley, et al (1978} for dis-
cussion and examples. The following example is
a simplified model of more realistic systems but
it retains salient features which will test a
variance reduction scheme.

The computer system consists of four processors.
It is functioning in a real-time critical envi-
ronment, repeating certain computational tasks
every 10 seconds. The first 7 seconds of this
10 second cycle time is devoted to executing an
application program. Three processors will exe-
cute this program, then compare their answers
and, at the ‘'end of the 7 second application cycle,
vote to determine the correct answer. If one
processor gives the incorrect answer it is
reconfigured out of the system. If two pro-
cessors give incorrect answers the system fails.
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While not executing the application program, the
processors run diagnostic programs looking for
faults. Thus, the remaining 3 seconds after the
7-second application run are devoted to diag-
nostics in each 10 second period. Also, if the
fourth processor is still in the standby mode as.
a spare 1t will devote all 10 seconds to diag-
nostics. When all four processors have no de-
tected faults the role of the spare is rotated,
see Figure 1.

Processor

1 . A | D = FD - A
2 e A | D | A { D I FD
K __A 1 D 1 A | D | A
4 o FD ] A 1 D 4 A

I I ]
Figure 1: The pattern according to which the
system operates. Where A = application program,
D = diagnostic program, and FD = full-diagnostic
program.

If the diagnostic program reveals a fault, the
processor containing the fault is reconfigured’
out of the system.

We shall observe the behavior of the system
during a missioh of finite prespecified duration
and observe mission outcome; success or failure.
In our case the mission time is one hour. We
assume that the processors fail independently

and for each processor the time until a fault
occurs is Exponentially distributed with mean 100
hours. We assume dependence in the error gener-
ator process: if a fault is present during
execution of the application program, the prob-
abitlity of error generation is e ; 1f faults are
present in two processors involved with the
application program then both will generate
errors. If a single fault is detected by diag-
nostics or voting, the processor with the fault
is reconfigured out of the system by the re-
maining processors, see Figures 2 and 3.

Processor
1 . A | D } FD { A D A
: I T
2 o A 1B A 1 Dy FD A
] i [ T
3 e—»”A 4Dy A Dy A D, A
l T T i 1 T ‘
4 e FDX,]A 1 |A_|
I 1 { 1 1
1 C E
time

Figure 2: Component #4, failed at time t1 .

C = at the end of this application program, gives
correct answer, E = at the end of this applica-
tion program, gives erroneous answer, and by the
voting mechanism is released.

Processor
1 o A 1Dy FD ! A
2 A 1 Dy A 1 Dy A
- 1 1 1 i
3 _ A 1 D A 1 Dy A
e 1 | 1 [
D
4 . FD_ x { A L
Y 4

time

Figure 3: Component #4, failed at time t1 s

the fault is detected by the diagnostic program
at time d] , and the system continues to

operate with the rest of processors. a

If two processors each give errors in the appli-
program, the voting mechanism fails and we assume
system failure, see Figure 4. We also assume
system failure when an error occurs in a system

'which has been reduced to one or two processors

or when a fault is detected in a system which
has been reduced to one processor.

Processor
T . A D, FD A )
e ] ] ] 1

o
»n
O

time

Figure 4: Component #4, failed at time t.| s
and component #3 failed at time ty . Correct

answers are given at the end of the second appti-
cation cycle, and at the end of the third an error
is generated and system failure occurs.

3. IMPORTANCE SAMPLING FOR RELIABLE SYSTEMS

This paper looks at one approach to variance re-
duction for reliability estimation of systems
which exhibit a certain amount of fault tolerance.
These systems have the property that no single
component failure can bring the system down, and
furthermore that once a component fault has been
detected, diagnosed, and isolated by reconfigur-
ing the system, it can no longer cause system
failure. Thus the main causes of system failure
are (i) the presence of two or more undetected
faults in the system and (ii) the depletion of
standby redundant components through failures and
reconfiguration. This type of system lends itself
to an analysis using importance sampling proce- '
dures. Such procedures would bias the simulation
sample so that missions during which the system is
in jeopardy (e.g., the presence of simultaneous
multiple undetected faults) are overrepresented.
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The first step in a sampling plan with importance
sampling is to avoid simulating any mission dur-
ing which no component failures occur. If com-
ponent failure is independent of application (as
is often true for electronic system) it is possi-
ble to generate component failures during a mis-
sioh conditional on at least one failure occur-
ring. Furthermore, if redundant items are kept
in a "warm standby" state, it is possible to
generate component failures during a mission con-
ditional on at Teast two failures occurring or
conditional on other useful conditions. This
rather obvious approach accounts for drastic
savings in the simulation of systems with highly
reliable components.

The second step in importance sampling, and the
main topic of this paper, is to manipulate the
sample paths for the system during missions where
something interesting happens, e.g., two or more
component failures. The success or failure of
the system during these missions will depend on
the timing and Tocation of the component failures
and the detection, diagnosis, and reconfiguration
process, which has a good deal of randomness. To
manipulate this sampling process we suggest using
the techniques of "Russian rouiette" and
"splitting.” These methods were used in the early
days of Monte Carlo simulation to study neutron
diffusion and nuclear shielding, see Hammersley
and Handscomb (7964), Chapter 8, and references
therein. Others have applied variations of the
"splitting" technique to steady state analysis

of stochastic service systems, sometimes success-
fully (Bayes 1970) and sometimes unsuccessfully
{Hopmans and Kleijnen 1979). Carter and Ignall's
(1975) idea of virtual measures is also related.
The application of "splitting" to reliability
estimation over finite missions involves*termi-
nating simulations and thus avoids some of the
difficulties found by Hopmans and Kleijnen (1979).

One possibie general formulation of the simulation
with roulette and splitting is the following.

Let {X(t), 0 <t <t} bea stochastic process
on a state space S , where tm is the determin-

istic (or random) mission duration. Let
G], 62,..., Gg and B], BZ""’ Bb be disjoint

subsets of S . The sets Bi are "bad" in the

sense that they are more Tikely to lead to system
failure. The sets G_i are "good" in the sense

that passage into one of these sets signifies an
improvement in the system, making system failure
appear less Tikely. The "Russian roulette" aspect
of the simulation occurs when a sample path enters
one of the "good" subsets: If Gi is entered at

time t , the path is terminated with probability
pi(t) and continued with probability 1 - pi(t) 3
if the path is continued its weight is increased

by a factor of (1 - pi(t))~] . The "splitting"

aspect of the simulation occurs when a sample
path enters one of the "bad" subsets: If Bj is

entered at time t , it is split into sj(t)

paths, each of which continues in time indepen-
dently of the others (conditional on the common

history up to time t ) ; the weight of each path
is decreased by a factor of 1/sj(t) . At time

tm , the mission failure probability is esti-=

mated using the sum of the weight of all sur-
viving paths. By replicating, confidence inter-
vals can be computed. The statistical design of
this experiment amounts to choosing the Gi's .

Bj'S s p3(e)'s sj(-)'s , and the number of

independent paths to start with at time 0. (Even
more general formulations of the problem are
possible; for example, splitting may occur at a
certain probabilistic rate while in a certain
subset rather than only when entering the subset.
Or perhaps, roulette may only bg a11owgd for
paths which have previously split and it is not
allowed to terminate all branches of one origi-
nal path.) Kahn (1956) derives some formulae for
determining optimal design parameters for exper-
iments involving bivariate observations, i.e.
stochastic processes indexed by a set with two
elements.

In this paper we shall restrict the analysis to
"splitting" and use a single class B. Name]y,
let B consist of all states where two active
(undetected) faults exist. Furthermore, we .as-
sume that the sample path splits into b branches
upon hitting B for the first time independent of
the time of hitting. Figure 5 depicts a sample
path which never hits B and therefore doe§ not
split. Figure 6 depicts a sample path which hits
B at time tp whereupon it splits into four

continuations. In the next segtion we discuss
the statistical analysis of this special case.

State
of

System on

I .
th time

Figure 5: Typical sample path during the jth
replication, where the branching point is not hit
and the mission was successful.

X1
State Xio .
of g SF
System
34\
SF
> - time
tB tm

Figure 6: Sample path during the jth repli-
cation, where the branching point was hit at time
tB . Here, branches 1 and 3 led to a successful

mission, whereas branches 2 and 4 experienced a
system failure.
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4, STATISTICAL ANALYSES OF PROCEDURE

For the purpose of comparison, we first describe
the standard sampling scheme with no path-

splitting and its statistical analysis. Suppose
r independent replicates are observed. Define

‘. = {1 , if failure occurs on replicate

J 0 , otherwise
and
failure time on replicate Jj , if
tj(FIF) = ) failure occurs.
0 , otherwise

An estimate of system failure probability P(F)
is then

X

p(F) = %’ i
1

N £~

J

This is én unbiased estimator with variance
Var(P(F)) = P(F)(1-P(F))/r .
This variance can be estimated by
v/r = p(F)(1-p(F))/r
The expected simulation time per replicate is

E(S) = P(FE(TLIF) + P(Pt,

which can be estimated by
= B(FYE(F[F) + B(F)t,

where
_ B v
t(F|F) = Z FIF) 2 X

is an estimate of E(T;|F) . The efficiency

measure of this design, rVar(P(F))E(S)

can be estimated by S . We shall compute this
quantity and compare it to the similar quantity
for other designs.

Now consider the path-~spiitting case. As before,
r independent replicates are observed. If the
sample path of a replicate hits the branch

point, there will be b continuations of the
process after the branch point. Let B denote
the event that the branch point is reached and

F the event of system failure. We observe the
following statistics

o A= ;1 , if (B,F) occurs on replicate J
3,0 0 , otherwise
. 1, if B occurs on replicate J
%5k = 4 and then F occurs on branch k
3
0 , otherwise
n = number of replicates which branch

W = number of replicates which do not
branch

time of branch on veplicate Jj ,
if B occurs.

tj(BIB)
0 , otherwise

time of failure on kth branch of
F|B,F) = replicate Jj , if (B,F) occurs

0 , otherwise

time of failure on replicate j ,
if (B,F) occurs

0 , otherwise
From this data we compute the estimates of

n

t5(FIB.F)

P(B), P(B), P(F|B), P(F|B) and P(F) :
B(B) = n/r
B(B) = n/r
~ _ 1 r 1 b
PFIE) = ) jZ] b kz] *i,k
B =1 7§
=1 ..
nog=1 90
p(F) = p(FIB)P(B) + P(F|B)p(B)
.1 f 1 b
= JZ] (xj,O B' kz'l Xj,k)

The estimator P(F) ds unbiased and its variance
can be computed. Let

: b
V(b) = var-(x‘],0 + %- kZ] X],k)
= (P(F|B) - P(F|B)%)P(B)/b
+ (P(FF|B) - P(F[B)2)P(B)(b-1)/b
+ P(FIB)ZP(B) + P(F|B)P(B) - P(F)2 ,

where P(FFIB) equals ‘the probability that both
of a pair of branches 1ead to system failure

for a replicate which hits the branch point; it
can be estimated by

b b
(kZ‘I Xj’k)(kz'l xjsk - ])

r
p(FF[B) =1 T
J=1

An estimate v(b) for V(b) can be obtained by
substituting the appropriate probability estimate
into the equation for, V(b) , then v(b)/r s

an estimate for Var(P(F))

The expected simulation time per replicate is
E(S(b)) = P(B)E(Tg|B) + P(B)b(P(FB)E(TE |B,F) +
P(FIB)L,, - E(Tyl8)) + PE)(P(FIB)L, +
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P(FIB)E(TEIB)) .

An estimate S(b) for E(S(b)) can be obtained
by substituting estimates for the probabilities
and expected times into the equation for
E(s(b)) 5 E(Tg|B) , E(T|B,F) and E(T|B)

can be estimated by

t(8[B) = %'j§1 t;(]8)
T(F[B,F) = o— Py (F|B,F)
B =1 k=1 ek
BB = —— It (F[B.F)
0 g1 Y
where
r b r
fg = jzl kZ] X5 T =jz1 x50 -

The efficiency measure of this procedure equals
V(b)E(S(b)) 5 it can be estimated by v(b)S(b) .
We shall compare estimates of this efficiency

measure for different designs to make comparisons.

5. A SEQUENTIAL PROCEDURE

It is impossible to know in advance the number of
branches b into which to split a path when it
hits the branch point. We would 1ike to use the
value which minimizes the efficiency measure
V(b)E(S(b)) . 1In Section 4 we assumed a fixed
value of b , which the simulation analyst must
guess before starting the simulation. In this
section we propose a sequential procedure which
allows the value of b to change from the ini-
tial guess.

Suppose the simulation is split up into 2
blocks. Each block-consists of r replicates.
Let b(i) equal the number of branches into
which a replicate is spiit when it hits a branch
point. For the 1ith block we shall collect the
same data and compute exactly the same probabil-
ity and time estimates as before. We add a sub-
script "i" to denote 1ith block. The data
are:

%i,3,0 3 b,5(F[BSF) 3
X'iaj,k 3 t'i,j(BlB) 3 t’i,j,k(FlB:F) :
n(i) ;3 n(i) ;

r b(i)
fip=.b L X

f. Xs s H
1,3,0 B 521 ke

r
i,0 ~ ~§

i .35k *

The estimates of P(B) , etc. for the ith block
are:

T,(818) L T (FIBLF) , T, (FIEF) ,

p;(F) = p;(FIB)p;(B) + p;(F[B)p;(B)
As before this estimator of P(F) 1is unbiased and
its variance V(b(i))/r can be computed using

the formula from Section 4.

At the end of each block we estimate the efficien-
cy measure per replicate for different values of
b, Wb)E(S(b)) , b=1,2,... . The mini-
mizing value of b is then used as the branch
number in the simulation of the next block of
replicates. In order to estimate y(b)E(S(b))

we need estimates of P(B) , P(F|B) , P(FF|B) ,
P(FIB) , E(Ty[B) » E(Tp[B.F) , and "E(T[B,F) .

If we have completed m blocks we will estimate
these quantities by pooling the estimates from
the individual blocks. The pooled estimates are

Ak m A
5a(F18) = 1 nDb((Fla)/ T nco)
i= i=

m ~
. I n(ib(i)(b(3)-1) b (FF]B)
b (FFIB) = =L
,21 n(1)b(i)(b(1)-1)
i=

k= m ./
Pu(FIB) = ) n(i)p;(F[B)/ T m(i)
i=1 i=1

. m _ m
tm(BlB) =_Z n(i)ti(BlB) .Z n(i)
i=1 i=1

o m _ m
t,(F[B,F) =1§1 f; g% (FIBsF) ig fi.B

o m _ — m
t,(FIB,F) =_Z1 f5 ot (FIB,F) .Z] fig -
i= ? i= ’

Substituting the above estimates into the equation
for E(S(b)) we obtain an estimate for this

*
quantity which we shall denote §m(b) . Simi-
larly, we estimate V(b) by substituting the
above estimates into the equation for V{(b) .
A slight difficulty can arise here: the covari-

ance term P(FF|B) - P(FIB)2 may be estimated as
negative. We know that this is impossible because
we are dealing with mixtures of bivariate inde-
pendent Bernoulli random variables which in
general have non-negative covariance. If the
covariance is incorrectly estimated as negative,
there are instances where the estimate of

V(b)E(S(b)) , denoted ¥ (b)S

m(b) will achieve

its minimum when b = « . Thus we estimate the
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covariafice term of the equation for V{b)

A A ‘ .
by max(0, pm(FFIB) - pm(FlB)z) . Thus gives

. ~k Ak . .
us an estimate vm(b)sm(b) of the efficiency

measure V(b)E(S(b)) . Letting b(m*1) equal
the value of b which minimizes the value of

Q;(b)gg(b) gives us the branching number for
next block of replicates.
After simulating the desired number (g) of

blocks of replicates, we compute a final esti-
mate of + P(F) . There are two choices:

By(F) = Py(FIBIB,(B) + By(FIBIP,(B)

or

ievais

A-{- ] LA
p(F) =% ) p (F).
z L1 e

The estimate SZ(F) has the advantage that its

variance is easily computed and then estimated:

T A
Var(Pﬂ(F)) =i21 v(b(i)) /re .

The variance of pZ(F) appears difficult, if

not impossible, to compute; however, there is a
strong possibility that it has a smaller variance.
If the values of b(i) converge quickly, it
seems reasonable that the two estimators will

give virtually identical values. For the pur-
pose of estimating the efficiency measure of the
wethod we use an estimate based on the above
-variance multipiied by the total simulation

time.

6. SIMULATION OF SYSTEM

The first thing to note for the above example is
that most missions did not have two or more .
component failures and thus system failure was
impossible. Letting T], Tz, T3 and T4 be

ordered fault occurrence times, for the above
example P(T2 < tm) = .00058618 (where tm =

1 hour, and the component lifetimes are exponent-
jally distributed with MTBF = 100 hours). Thus

it is unnecéssary to simulate 99.94% of the paths.
We just generate T1, TZ’ T3 and T4 condition-

§1 on {T2 < tm} , as follows

P(T, <‘tm) P(at Teast 2 component failures in

[0,t,1)

4
1- (M) L g(q o TAtmy(-Atm3,

Pty < Tp <ty +dt | Tp < t)

2
At,  -At, At
=121 -e Zhe  Zdt(e 2)/g(T2 <t

We use the rejection method to generate the
random variate T2 from the above density.
H

After generating T2 , we generate the random

variate T1 conditional on the observed value

of T2 . The conditional cdf ‘s
-Xt]
_ _1-€
P2ty 1 T = tp) = ==,
1-e

We used the inverse c¢df wmethod to generaté the
random variate T1 from the above cdf . Once

the second component failure occurs, the subse-
quent T3 and T4 can be generated easily as

T3 - T2 and T4 - T3 are independent exponen-

tial variates with rates 2\ and A respective-
1y. The aforementioned technique gives a tremen-
dous savings: a reduction of approximately 99.9%
in total simulation time.

The second point is that the behavior of the sys-
tem is deterministic up to T1 and then there

is no need to simulate it during [O,T]] . We

start simulating at T This gives an addi-

1"
tional savings of approximately 33% in simulation
time. (In general this can't be done, so our
conclusions concerning simylation time are based
on the assumption that the process was simulated
during the whole period [O,tm]-)

If one or more undetected faults .are present, we
simulate error generation by conducting a
Bernoulli experiment with parameter p equal to
the error generation probability at the end of
each 7 second application cycle. If the outcome
is "success” an error occurs in all the processors
which contain faults, otherwise all processors
give the correct answer. If one processor gener-
ates an error it is reconfigured out of the system.
If two or more generate errors, system failure
occurs. Meanwhile, the diagnostic program is
being executed during the diagnostic cycle,. and

we assume that the time to diagnose a fault is
exponentially distributed with some diagnostic
rate.

We decided to split the sample path when the pro-
cess enters states consisting of "two active
faults present" for the first time. We arbitrari-
1y chose to split the path into five branches
(b = 5) for the fixed path-splitting scheme.
When the sample path hits the branching point, we
save the following information: (1) state of the
system, (2) time of occurrence and (3) future
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event 1ist. This is easy to do with the Discrete
Event World View. (The programs are written in
SIMSCRIPT II.5)

7. COMPUTATIONAL EXPERIENCE

We ran four different cases, with error gener-
ration probability = .002 and .01 , and diag~
nostic rate = .002 and .001 . Table 1 pre-
sents the point estimates for the standard
sampling scheme,

Table 1. Standard Sampling Scheme

Error Gen. Diagnostic Number of Point Estimate of Estimate of
Probability Rate Repticates P{sys. faill|2} Estimation
Error o

.002 . .002 400 .01000000 .00497494
.002 .002 2000 .01600000 .00280571
.002 .001 400 .03500000 .00918898
.002 .001 2000 .03400000 .00405240
.01 .002 400 .04250000 .01008634
.01 .002 2000 .04600000 .00468422
.01 .001 400 .08250000 .01375625
.01 .001 2000 .07500000 .00588861

Table 2 presents the point estimates for the case
where the splitting technique was applied with a
fixed number of branches (b = 5) .

Simulation
Time
963,527
4,748,745
351,447
4,708,722
' 944,368
4,656,700
933,110
4,594,670

Table 2: Path-splitting Variance Reduction Scheme Fixed

number of branches = 5
Error Gen. Diagnostic Number of Point Estimate of Estimate of
Rate Rate Replicates P{sys. fail|2} Estimation
Error o

.002 .002 400 .01199999 .00252982
.002 .002 2000 .01449999 .00125698
.002 .001 400 .03749999 .00451110
.002 .001 2000 .03379997 .00196214
.01 .002 400 .04949985 .00648999
.01 .002 2000 .04739997 .00265330
.01 .001 400 .08949989 .00840952
.01 .001 2000 .07649994 .00343220

Table 3 presents the point estimates obtained
using the sequential scheme with blocks of 100
replicates (so, we had 4 blocks of 100 replicates,
and 20 blocks of 100 replicates for each case).

In this table the number of branches used in the
Tast block is shown. From our experience, the
convergence of the optimization scheme was fast

in all cases. (The specific sequences of b{i)'s
were: (i) for (e = .002, v = .002) ,

{(b(i), i =1, 2, ...,20) = (5, 14, 10, 10, 11, 11,
12, 12, 13, 13, 13, 13, 14, 14, 13, 13, 14, 14,

Simulation

Time
1,869,938
9,235,245
2,013,718

10,426,922
1,503,742
7,729,047
1,638,789
8,086,885

637

Efficiency
Measure
23.85
37.38
80.34
77.33
96.07
102.18
176.58
159.38

* Efficiency

Measure

11.96
14.64
40.97
40.13
63.34
54.43
115.90
95.23
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13, 13) ; (ii) for (e = .002, r = .001) ,

(5, 11, 12, 11, 11, 10, 11, 11, 10, 10, 10, 10,
1, 10, 10, 10, 11, 11, 10, 10) ; (iii) for

(e = .01, r=.002) ,(5,8,7,7,6,6,6,6,17,
7,7, 7,7, 7,7, 7,7, 7,7, 7) ; {iv) for

{e = .01, ¥ = ,001) , (6, 6,5,5,5,5,5, 5,5,
5,...55) . ‘Even though convergence of the

b(i)'s was quite fast and also stable, we ob-
served that the objective function was quite flat.
In Table 3, the final point estimate is

*
‘ﬁZO(F) , but the "Estimate of Estimation Error"
is the square root of the estimate of Var(Pgo(F))
as discussed in Section 5.

Table 3: Sequential (Replicates split into blocks of 1009

Error Gen. Diagnostic Number of Final Optional Point Estimate Estimate of Simulation

Probability Rate Replicates Number of of P{sys.fail Estimation Time
Branches |2} Error o
.002 .002 400 10 .01731585 .00245357 2,954,350
.002 .002 2000 13 .01545740 .00095394 17,528,016
.002 .00% 400 1 . .03233641 .00333317 3,359,782
.002° .001 2000 10 .03214544“ .00144568 18,259,600
.01 .002 400 7 .04819386 .00545802 1,899,295
.01 .002 2000 7 04575009 .00247184 9,017,191
.01 .001 400 5 .07783008 .00779295 1,776,468
.01 .001 2000 5 .07350981 .00348134 8,479,483

In Table 4 we present point estimates of a run
using the splitting technique with fixed number
of branches again, but where this number of
branches is the number of branches used in the
20th block of the sequential case. Note that in
Tables 1 through 4 we estimate the conditional
probability of system faiTure given at least
two processor faults during [O,tm] 5 in order

to obtain the unconditional probability of
system failure. These numbers must be multiplied
by ' .00058618 .

Table 4: Path-splitting Variance Reduction Scheme Fixed
Number of Branches = Optimal Number Estimated

Error Gen. Diagnostic Number of Number of Point Estimate Estimate of Simulation
Probabiliy Rate Replicates  Branches of P{sys.fail Estimation Time
[2} Error o
.002 .002 400 10 .01791666 .00227816 3,321,968
.002 .002 2000 13 ' .01624999 .00089443 19,354,112
.002 ‘ .001 400 1 .03727269 .00340735 3,703,299
.002 .001 2000 10 03559995 .00155885 17,716.464
.01 .002 400 7 .04285712 .00529717 1,864,769
.01 .002 2000 7 .04135712 .00223159 9,167,203
.01 .001 400 5 .08949989 .00840952 1,638,789
.01 .001 2000 5 .07649994 .00343220 8,086,885

Efficiency
Measure
17.78
15.90
37.33
'38.21
56.59
55.13
107.89
102.75

Efficiency
Measure
17.23
15.44
42.99
42.97
52.33
45.62
115.90
95.29
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In Table 5 the estimated amount of variance
reduction is summarized. The efficiency measure
is the estimate of the variation in one repli-
cate times the expected simulation time per
replicate.

Table 5.

Error Gen, Diagnostic Number of
Probability Rate Replicates Standard
.002 .002 2000 37.38
.002 .001 2000 77.33
.010 .002 2000 102.18
.010 .001 2000 159.38

8. CONCLUSIONS & SUMMARY

Importance sampling was used for variance
reduction. The "splitting” method requires more
simulation time, so we used a measure of effi-
ciency equal to the product of the estimated
variance and simulation time. Percentage
decreases of approximately 40 to 60 percent were
achieved in this measure from the standard to
the)sp]itting case (with fixed number of branches
=5) ,

The sequential scheme converges rapidly to the
optimal number of branches. But, we observed
cases where this "optimal number" estimated,
actually was not optimal. In order words, the
percentage reduction for the scheme with the
arbitrarily chosen number of branches equal to

5 was greater than that achieved with the
sequential method and also that achieved with

a fixed number of branches equal to the last
value in the sequential method (Table 4). There
is considerable noise in the system which may be
the source of this apparent contradiction. It
would be necessary to simulate more cases or
examples to get a clearer picture of this aspect
of the performance of the sequential method.
Nevertheless, in the runs of 2000 replications,
if the sequential scheme is not better (in the
sense that it doesn't give the best estimate

of reduction in efficiency measure} it appears
close to optimal.

This preliminary study shows that the "splitting"
technique is a promising method but that more
study is necessary to understand its properties
more fully.
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