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Control variates can be applied to Monte Carlo sampling experiments to
improve the precision of the results. This method is especlally useful in
statistical problems were low order approximators of a particular variate of
interest are avallable and possibly several statistical properties of the
variate are to be investigated. In this paper a control variate scheme based
on the linear approximator § of the nonlinear parameter estimator ¥ is used to
improve the precision of the first four moments of @ and the covariance matrix

. of the paramter estimates. The control variate method is shown to improve the
effectiveness of the Monte Carlo results without substantially increasing the
estimation effort, and it is effective over a wide range of nonlinearities.

An approximate expression for the effectiveness of the control variate method
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based on the Beale measure of nonlinearity Ng is given.

1. INTRODUCTION
In the nonlinear parameter estimation or

regression problem, the p-vector of parameters §

are estimated from the n responses Yy

(i=1, ..., n) which are assumed to consist of the

true response M (51 s 6.) plus an additive error

€4
vy = n(xys 8y + &0 ¢

The Ei are assumed to be iudependently and
normally distributed random errors with variance
02, and n(x; 8) is a nonlinear function of the
parameters E, The unknown parameters EO are most
often estimated by the method of least squares.
That is, the estimator E_is chosen to minimize

the sum of the squared residuals

™8

s(9) =

i3

2 2
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A
so that s(9) = min S(9). Of course, other

estimators for B can be used, but the least

squares method is the most common and will be
treated here.

The nonlinear regression problem is similar
to that of linear regression, save that the
nonlinearity of the response function complicates
the numerical problem of obtaining the estimates
and of resolving the statistical properties of
the estimators obtained. The solution to the
least squares problem is generally not a closed
form function of the observed responses y; so
that iterative procedures are needed to obtain a
solution (Bard, 1974; Gallant, 1975). The lack
of a closed form solution makes the distribution
of the estimator E_intractible, and the sampling
distribution of the estimator §‘is known exactly
only asymptotically. The asymptotic
approximation of the sampling distribution can be
very misleading in problems with a small sample
size. In particular, the finite sample estimator
is almost always blased and the shape of the
confidence region can differ markedly from the
elliptical contours of the asymptotic sample
distribution.
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The statistical properties of the estimator
@icaﬁ be approached using the asymptotic
distribution, through a serles approximation
solution, or via Monte Carlo sampling. Under
certain circumstances (see Gallant, 1975, for
instance) the distribution of §.is asymptotically
normal with mean O3 and variance matrix
GACRLICN N
Jacobian matrix of first derivatives of n(x;9)

Gz, where F(QO) is the n by p.

with respect to the parameters Q:and evaluated at
gb.
limiting matrix as the sample size n dincreases
indefinitely.

Note that the variance matrix is the

To use the asymptotic
approximation In practice one usés the finite
sample and the two formulas glven above. This
solutioc 1s essentidlly the first order
approximation to be described.

Séries approximations can be obtained by
approximating the sum of squares function S(Q) or
its derivative 3S(0)/99 (which vanishes at §) at
some pdint such asﬁgo. Tﬁe approximator results
from minimizing thé approximate sum of squares
function or solving for the point which solves
the equation 3$(9)/38 = 0.
first order approximator E.for §.is given by

For instance, the

- T ~1,T,
8 =05+ (F(8) F(8y) "F (8¢, 3)

This is §imilar fo the asymptotic solution, in
that § is normally distributed with mean 20 and
variance matrix (F (—O) F(_O)) 62, although in
this case the number of rows in F(ﬁ) will be
finite. The approximatdr § corresponds to the
Gauss approximdtion method for finding a solution
Higher
order approximations can be deérived (Box, 1971;

Clarke,'1981), but simplifications are introduced

to the nonlinear least squares problem.

in each to make the solution tractable in the
Note that measures of
nonlinee}ity (Beale, 1960; Bates and Watts, 1980)

such as Beale's N- have been developed to assess

multiple parameter case.

the extent to which § can be used to. approximate

the statistical properties of 6 The measures

can readily be adopted to any parameterization of
the model, e.g., ¥ = ¥(9), and Beale denotes the
least possible nonlineerity undér any parameter-

ization as thé intrinsic nonlinearity, N¢.

obtain that accuracy:

Monte Carlo methods can in principle be used
to overcome the Timitatlons of aproximation’
methods. A direct Monte Carlo algorithm coﬁsists
of N repeated independent samples of the error
vector E(E , v=1,1,...,N), from which (usin& (1))
the observed vectors ¥, are obtained and used to
obtain estimates 9 by repeated solution of
equation (2) for each Iy The N random sample
points 6 can be combined to obtaln the samble
statistics to estimate the properties of 9 - For
instance,. the kEE.marginal moments of
8, u = E®F
component by component) can be estimated using

(where the exponentiation is
A
the statistics Hpes

x (%)

8
()
and the variance matrix of the parameter

N
estimators 3 Var (9) Ye ¢an be estimated using

the sample statistic Ze

A 1 NA A '
T = (DT 2 (@ - @~ upT ()

v=1

The Monte Carlo method is conceptually simple
and can be easily extended to nonlinear least
estimators other than nonlinear least squares or
to errors other than normal, but suffers from the
drawback that N nonlinear estimation problems:muet
be SOIQed and that the standard errors. of
statistics such as ﬁl decrease only as er/Z.
Therefore, although arbitrary accuracy can be
obtained via Monte Carlo sampling, arbitrarily

many estimation problems may have to be solved to

2. TIMPROVED MONTE CARLO USING CONTROL VARIATES
The efficiency of Monte Carlé sampling can
be improved by variance reduction techniques
(Hammersley and Handscomb, 1964; Law and Kelton,
1982).

among which the best known are:

These methods can take several forms,
antithetic
variates, stratification, conditional
expectations, and control variates. Control
variates, using the linear approximator §
(equatfion. (3)) as the control variate is a very

natural approach. This method 1s very simple to
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implement, and it leaves the sampling method
unchanged so that the sample estimates @} are
all independent. _ The distribution oflé is known
and 8§ is easier to compute than @ so that very
little additional work is required to implement
the method. 1In particular, the control § can be
used as the basis for controls for all the
marginal moments and covariances, as well as the
quantiles. It is more efficient than direct Monte
Carlo at all the levels of nonlinearity commonly

encountered in practice.

The details of the control variate method
are given in Swain (1982) and Swain and Schmesier
{1983).

moments Uy, are given by

The control estimators for the marginal

A N A N
B (B = B = B (S - ES,) (6)
where
N
I -1 k
G =N E (&)
v=1

is the sample kth moment for § and the p by p
matrix By is the control weight matrix. The
A
method depends upon the covariation between 9&
and Gv (they both depend upon the same vector of
~
errors, ev), so that when Ek is greater than its
N N
expectation, it can be assumed that M exceeds
its expectation as well, and a correction
A N N
proportional to -(ék - Eék) should be made to Uy .
A
It can be shown that the variance of Ek(Bk) is
minimized for the choice J
*_

A -
L = Cov( (O, (OF ) var i (),

B
and that the decrease in the control variate
variance is largest when the correlation between

A
§ and 6 is greatest. The covarlance term in
- - * *
% is generally unknown, so Bk

must be speciflied in some other way.
with the method has shown that the cholce By =

equation (7) for B

Experience

I (I is the p by p identity matrix) is nearly
optimal and leads to a simple, unhiased estimator
for Hy . This is also consistent with the

*
asymptotic case, since Bk(Eqn(7)) tends to the

identity matrix as the sample size increases
indefinitely. . .

A similar contfol variate scheme c;n also be
given for Ze: Let §6 be a vector of length

m=p(p+1)/2 containing the lower diagonal elements

n A A N
of Xe stored by row (e.g., 011, 019> e s Upp)w
Let §5 be a similar m-vector for ¥5. Then
84(C) = 84 = C( 85 = E(Sg) ) (8

is a control variate estimator for 29 and again
by experience the choice of the m by m identity

matrix for C is nearly optimal.

3. RESULTS

The efficiency of two Monte Carlo procedures
can be computed as the ratio of their precisions,
with precision measured as the inverse of the
variance. For the multiple parameter case the
scalar measure adopted is the determinant of the
variance matrices, which is also known as the
generalized variance. Then the efficiency of a
control variate estimator for the kth moment
compared to the crude estimator of the kth moment

is given by

e}
il

YEY, IAVar B@Dras | var 0] )
| var ®.(0)]/ | var § (D]

]

since direct Monte Carlo corresponds to the use
of a control variates with a O weighting matrix.
Note that efficiencies in excess of 1 indicate
that the control variance is less than that of
the direct Monte Carlo estimator.

The sample efficiencies (k=1) are plotted in
figure 1 versus the nonlinearity measure Ng,
showing that the control variate estimatof ig
more efficient than direct Monte Carlo for a wide
range of nonlinearities, and the efficiency
becomes infinite as the nonlinear estimator
approaches the behavior of a linear estimator
(i.e., asymptotically). The range of Np
depicted is typical of the values encountered in
practice.

The apparent relation between E1 and Ne is
not surprising, since the Beale measure Ng

explicitly measures the appropriateness of 8 as
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Summary of sampling efficiencies for the contrel estimator

. Ei(t) for 25 samples taken from Swain (1982)l Some points are

multiple samples. Sample 16 has one parameter which behaves like

a linear estimator and therefore has higher than expected efficiency.

an approximator for @fand E_is the control
variate used here. Moreover, an approximate
relation between the two (for k=1) is given

(Swain, 1982) by
= -pP
E1 = (ZNG) (€))]

éﬁq the degree of this fit is given in figure 2.
The relation between efficiency and Ng,

equation (9), allows a prediction in advance of

sampling of how efficient the control variate

scheme 18 likely to be. However, since.the

control variable strategy is efficient for all
but the most extremé nonlinearities (Ng in "

ss of 1/F
excess of 1/ Pan-p3C
according to Beale) and because the method

can be considered extreme,

requires only relatively simple linear
computations, it will always be advantageous to
use the method. In addition, equation (9)
suggests that the efficiency of the method can be
further improved by a sultable choice of a
parameter transformation. An upper bound on the
possible efficiency using control variables can

be given by substituting the intrinsic
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Figure 2. Approximate efficiency formula for the control estimator
ﬁl(I), p~lln E1 = - 1n ZNS' The 25 samples are taken from Swain.(1982).

nonlinearity N¢ in place of Ne in equation (9).
For instance, in certain cases a linear
approximation based upon the transformed
parameters § = (f)k leads to additional
efficiency in the control varilate estimator for

the marginal moments (Swain, 1982).
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