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A number of sampling schemes are described which aim to improve the accuracy of
estimators in simulation experiments. The schemes negatively correlate key
sample statistics in pairs of runs or blocks of runs. Use is made of generators
which produce random samples from certain distributions when sample statistics

1ike the mean and dispersion are prescribed. Special cases considered include
normal, inverse Gaussian and gamma generators. These can be used in their own
right or as the basis of generators of other distributions. Guide lines are

given which indicate the conditions under which the schemes might be effective.

1. INTRODUCTION

The use of antithetic variates for improving the
accuracy of estimators in computer simulation
experiments can lead to large increases in
efficiency if applied properly. Against this
must be set the additional work a user is put to
in order to implement such procedures and the
possibility that, if the antithetic sampling
scheme has been i11-chosen, there may be 1ittle
gain in efficiency at the end of the day,
rendering the additonal work fruitless.

To assist the potential investigator in making
use of antithetic techniques, we describe some
sampling schemes which can be tried in commonly
occurring situations. The general layout of the
schemes and the conditions when they are
effective will be indicated.

The schemes make use of methods of generating
random samples from certain distributions, Tike
the normal and inverse Gaussian (IG), conditional
on certain sample statistics, such as the mean

and variance, being known. Some are already
described in the Titerature, others are not so

well known or are new. These generators can
either be used directly or they can be modified

to provide samples from more general distributions.

2. LAYOUT OF SAMPLING SCHEMES

The basic simulation run is illustrated in

Figure 1. Rectangles represent programs or sub-
routines that output random variates. Thus in
Fig. 1 we have a random variate generator, A,
which produces a random sample X = (X1,X2,...,Xn)

which is used in the simulation program, B, to
produce a response, Y. The X-generator is
indicated as separate from the simulation program
though, of course, in many simulations it can be
regarded as being embedded within it,

A B
X X [Simulation Y
A A
Generator Program
Figure 1.

Sampling in a Single Run

We shall consider two cases. The first is where
it is solely the mean of Y,s, that is of interest.
The second is where other characteristics 1ike
the variance of Y,o?, or certain percentiles, or
its cdf that are of interest. Sampling schemes
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which are good for estimating 6 can be bad for
est'iinatinglc2 or the cdf of Y.

Consider first the case where it is just the mean
of Y that is of interest. The central idea is to
make a pair of runs in which the responses, Y,Y'
are neqgativély correlated. Then ¢ can be
estimated by the average

o= 3(Y + Y1),
This has vériance
i
var(e} = 3(1 + plvar ¥

Where o is the correlation bétween Y and Y’. This
correlatiof can te obtainéd indirectly by use of
a control variate, T, which can pe regarded as a
regressor variable on which Y dépends, If the
sampling of the cdntrol variate is under our
control we'can ithen arrangé to correlate the
variates T and T' i1 the twe ¥dits and thereby
induce a correlation in Y and Y'.

T shouTd bg ¢hosen as far 4$ is possible to ‘match
the form of Y. Thus if Y is a mean, T should be

a iean. Typically T will be a sample statistic of
the sample X. Examples are

T

X (sample iean)
s (sampTe variance)

It

2(%3- %Q (harmoric dispersion measure)

(max. and Win. order
statistics)

X(1y> *(n)

Fig. 2 illustrates the saimpTing :process. The
first run is represénted by bTocks A and B. The
value of T s calculated from the sample X. We
can then cgtculate the antithetic value ~ T' from
T (btock €). To do this it is rnécessary to know
the cdf, F(.), of T. T’ can then be obtainéd as

Tr = F i1 - F(DL (2.2)
This is simply ‘the inverse distribution furction
(IDF) transform in which a uniférm variate U, here
{ - F(T), is transformed By the inverse F-1 into a
variate T':ziwith the 'same -distribution as T.

In-géneral, for-those T which are means, the cdf,
under the central 1imit thedrem, tends to
normality., Thi% has two'effécts. Fifstly, the
corréfation of T and T’ tends to -1, the best
possible. Secodiidly, symietry of the normal dis-
tribution means that (2.2) is approxiinatély

Tr = 2E(T)-T. It will often be sufficiently
accurate 'to replace (2.2} by stite piecewise poty-
romial in T. If a very accurate value of T’ is
heeded, this ccan be ebtained by Newton-Raphson
iterations on (2.2) written in the form :

BT - v =0,

‘whefe U = 1 - F(T). Computationally this is
‘comparéd with generatibn of a siﬁgfg T, but 1§1°w
_overall terfis ‘this is-unimportant if variate
generation is Thexpensive coinparéd with' the total
‘simulation.

‘The next step, ‘once T’ Has been obtaihéd, is to
produce the antithétic sample X’=(X1',X2’,..,,X'n)
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Figure 2.

SafpTing for a Pair of Runs

to be used in the seeofid run €Fig.2, block D).

The problém is to generate an X-sample, X", from
tHe -conditional distribution of % given T. This
step is, statistically speaking, the most interes-
tifig ore in the whole process. It is tractable
only for certain X-distributions in -combination
with apprepriately chosen T statistics.. We out-
Tine -a nuinber of specific cases in the next
sectioh.

Finally, once X’ has been obtained, the second
run (Fig. 2 block E) can be made yielding the
antithétic response Y'.

3. SAMPLING SCHEMES FOR PARTICULAR DISTRIBUTIONS

In this section we give particutar examples of
those combinations of distributions and sample
statistics T for which it is péssible to generate
antithetic samples by first generating an anti-
thetic T’ .and then generating X' conditional on
the value of T’. -

Example 1 X ~ Gla,u), a gamma variable with pdf

£(x) = o"* e 000, x> 0.

Let T =.}X ~ G(e,nu). T fits into the format of
the pievious discussion in the sense that T’ ean
be generated by (2.2). The following algorithm

_shows ‘how a safiple X’ can-be obtafined with given

Tr value.

Algorithm RSGA : Giveh T’ ~ G(a,ny)

Step 1. Genérate‘wﬂ;wz,...,wn independent Gtosn)
Step 2. Set a = T'/i-wj
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Return with X', = awi i=1,2,..05n0
The X, ' are independent G(o,u) with JX’ =T

This algorithm has been mentioned by Cheng (1981,
1983a). It is essentially the result described
by Aitchison (1963) as Property 4.

Example 2 X ™ N(0,1), a standard normal
var1a5!e. Let T = (T T ) where
=X~ N, n~ )
sz - nXz (=(n-1)s2) ~ X1

Here T1,T2 are independent, so T’ can still be

generated by (2.2) which is now applied to each
component separately. Once T' is calculated we
can obtain X' by use of a method described by
Pullin (1979) for generating a sample X given
¥,s2. Cheng (1983a) gives a shorter version
which makes use of the special case of RSGA with
a = pu = 3. The next example indicates that it
is possible to extend this example to the bi-
variate case where all the first and second
moments are correlated between the pair of
samples.

Example 3 X = (X X ) ~N(D’,1I) {bivariate
normal with 1ndependent standard normal
components). Let T = (T1, gsees o7 ) where

T1 = X1, = Y' ~ N(O,n-1)

Ty = ZX§j-nX1 = 1X55- nXg v X2,

Tg = (2X1j.X2j - nX1X2)Ni3 4 = Ts SaY,

where r has pdf {B(§,§n~1)}"1(1—r2)%(n'4),—1§r§1.
A11 five components are independent so {2.2) can
again be applied. Once T' has been evaluated we
can generate X' given T’ using the method given
by Cheng (1983b) which is based on similar ideas
to that used in the univariate case.

Examples 2 and 3 allow one to generate antithetic
normal samples with correlated sample means and
covariance structure. The next example extends
this to the inverse Gaussian (IG) distribution
which has a shape parameter that enables the
skewness to be altered. In situations where
skewed random samples are needed, this is a more
flexible distribution to use than the normal.

Example 4 X ~ I{u,A), an IG variable with pdf :
f(x) = (A/an3)éexp{-x(x-u)z/Zuzx}
and let T = (T1,T2) where

T1 = Y v I(Lhn)\)

-1 7-1
To =A(IX7 = X77) ~ x® g
Then T1.and T, are independent so (2.2) can again

be used to calculate T1’ and Tz' separately.

Cheng (1983a) gives details together with an
algorithm for generating X' from T'. The
quantity T2 is a measure of dispersion and is the

analogue of the variance term (n-1)s? in the
normal case (see Tweedie 1957, Johnson and Kotz
(1970)). There is a close analogue between this
algorithm and the one described by Pullin for

the normal case (c.f. also Michael et al, 1976).

The final example is fairly elementary but is
included as it indicates how a sample X can be
generated in which prescribed order statistics
are antithetically correlated.

Example 5 X ~ U(0,1). Denote by X(1),X(2)...,
Xin the order statistic of a random sample X.
Let T = (T1,T2) where

T1 = X(1) (min. order statistic)

T2 = X(n) (max. order statistic)
Now T1 and T2 are correlated. However we can
generate T’ by regarding X(1) as generated by the
IDF method and X(n
X(1), in the latter case making use of the fact
that X( )? conditional on X(1), is distributed

as the maximum order statistics of a sample of
size (n-1) uniformly distributed on (X( 1) 1)

(see for example Pyke, 1965). Then X(1) and X(n)
can be written as

X(1) =1-{1- )l/n e}
n-
Xtny = X(1y * (1 - X4y,

as generated conditional on

where U1,U2 ~ U(0,1). X’ can then be generated
by replacing U and Uy by (1 - U1) and (1 - Uz) :
_4 oy Mn '
X(1)I —1 U1
r_ r =
X(my'= X(1)* (%)
This does not treat X(1) and X(n) symmetrically in

[ 1/{n-1)

the sense that X(1) and X(1)' are more negatively
correlated than X(n) and X(n)" However as the

sample size increases the maximum and minimum
order statistics become asymptotically uncorrel-
ated and both antithetic pairs then tend to the
same correlation.

1 r
Once X(1) and X(n) are generated, the full

sample X' is given by generating
UpslUgsevesUy g v UID(0, 1), setting

= r- ! i = -
X(J)’ U(J)(X(n) X(1) ) (J 2,3,...,n 1) and
returning with {X(j)'} randomly permuted.

This last example has obvious extensions to
other prescribed combinations of order statistics.

4, SAMPLING SCHEMES FOR GENERAL DISTRIBUTIONS

It might appear that the previous discussion
restricts the distribution of the X-sample to just
a few special examp]es This is not the case.
Suppose that the X's have cdf Fy (.) different

from any of the ones cons1dered We now start by
generating a Z-version of X where Z s one of the
special cases, and then convert the Z-version to
X for use in the simulation. The procedure is
indicated in Fig. 3.
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Sampling a Pair of Runs with Sample Cotversion

In inducing the negativé correlation between rums,
Z now plays the role of X in Fig. 2. The ohly
modification is that Z must be converted to X for
use in the simulation. This can 4gain bé done by
the IDF transfori :
X; = Fy M(ZI3 (3 = 12,....0) (4.1)
where ¥(.) is the cdf of Z. The transform is -
monotone in Z. This means that sample measures of
location and dispersion of X will be correlated
with corresponding quantities in the Z-sample.
The correlation will be especially strong if the
edf of X is similar to v as then (4.1) will be
close to the identity transform X = Z. Thus any
antithetic scheme which'we apply t6 Z will have
much the same effect on the X-samplel If v is
dissimilar to F, this only Tessens the correlation
between' runs; %f does not altér the distribution-
al properties of the X's which remain independent
with exact edf Fy(.).

An added advantage OF making ¥ resenible Fy is

that the trahsformation (4.1) can be replaced by
some simple piecewise polynomial approximation,
obviating the need to evaluate ¥ and F-'
explicitly. Cheng (1983a) gives an exanmple in
which the IG distribution 15 uséd to approximate
the extreme value distribution.

5. SAMPLING SCHEMES FOR ESTIMATING A CDF

We now examine the nodification reguired when
additidnal features of Y such as 4¥s variance, or
selected percentiles, or its cdf are of interest.
Making d set of paired runs is not effective.
Instead we need to make two blocks of runs. An

estimate of variance or percéntile can then be
obtained from the sample of Y's obtained from
.each block. Variance reduction is again achieved
by introducing correlation between the two blocks.
This paired block scheme is i1lustrated in Fig. 4.

Relative to X, the variate S has the same
interpretation that T had before it is a
sampie statistic of X and it is highly correlated
with Y. However we do not correlate a pair of S
values directly. Each block gives rise to a
sample of S values S = (84,555...,5,) from

which We can calculate some suitable chosen
statistic T. The idea is now to correlate’T
with the ¢orresponding statistic T’ computed
from sample S’ obtained from ‘the second block.

The correlation of T with T' (Fig. 4, blocks F,
C,G) is computationally the same as blocks F,C,G
of Fig, 3. However instead of using S; to

generate an individual Xi we use 51 to generate
a whole sampte of X.. This is dépicted by biocks

A which are thus computationally identical to
block G of Fig. 3 or 4.

For the scheme to be effective we want S to be
similar in form to Y, and T to be a quantity

(or quantities) that strongly influences the
distributional characteristic of Y under
investigation. For example, suppose Y is
depéndent on the average of the X's and we wish
to estimate a percentile of the distribution of Y.
Then we can take S = X and we would expect an
estimator of the percentile obtained from a bTock
of runs to be influenced by the location and dis-
persion of thé S-sample. So take

T = (5, Jst - mst).

When X is a nermal variable, the above example has
an intéresting extension to thé case when S is
bivaridte normal S = (g1, z2). T can then be
the five-component statistic of Example 3,

Section 3. This allows all the first afd second
order sample moments of $ and S$* to be hegatively

correlated. We can use g, as the sample mean of
the X sample and z, can be treated as the rormal-
version of its sample variance and so can be
converted to an exact x? variate using a trans-
form of the form (4.1). This particular

scheme has applications in situations where Y
depends on both the location and dispersion of the
sample X.

6. DISCUSSION

Certatn points should be borne in mind concerning
the effectiveness and ease of use of the sampling
schemes described above.

In assessing efficiency we must weigh the
reductioh in: variance against the additional

work that use of an antithetic sampling scheme
entails. The suggested methods of generatirg
antithetic samples may take up to several times
the length of time needed to generate indépendent
sampTes, However the generation of random
variates usually only take$ a fraction of the time
to carry out the whole simulation. For example,
if the generation of variates take 10%of the
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Generation of a Pair of Y Samples

overall time and we take five times as long when
using an antithetic scheme, this gives an over-
all increase in total time of 40%. The break-
even point is thus obtained with a variance
reduction of just 40%.

As far as variance reduction is concerned, the
suggested sampling schemes are obviously more
suited to some kinds of simulations than to
others. An ideal simulation would be one where
the stochastic input comprises a single sample X
of fixed sample size. Simulations concerned with
evaluating the distributional properties of test
statistics such as their bias, efficiency and
power comprise one important category for which
our methods are particularly suited. In Figs. 2,
3 and 4, the dotted box shows that in each case
the antithetic scheme can be set up as a sub-
routine, separate from the simulation program,
outputting solely the random samples required by
the simulation.

At the other end of the spectrum are those
simulations connected with evaluating the
performance of a complex, say queueing, system.
Such simulations involve several stochastic
input streams. Moreover the number of variates
actually used from each stream will usually be
random numbers. Our methods are not so well
suited to such problems. However their use is

to Estimate the cdf of Y

not totally precluded. One possibility is to
apply antithetic sampling to each input stream
separately. The variates in each stream can be
divided into groups of fixed size and antithetic
sampling applied to corresponding groups in
separate runs. There may be an "end effect"
because different numbers of variates are used in
different runs., This will result in some variates
being generated at the end of runs using fewer
variates, but which are not then used. The

main objection to this blanket approach is the
rather messy nature of the book-keeping required
to keep track of the antithetic variates used in
different runs. A more parsimonious method is
usually desirable. For instance in bottleneck
studies, though many input steams may be used, it
should be possible to identify one or two streams
as being critical whose sample statistics are
Tikely to be strong candidates as good control
variates. Antithetic sampling can be applied to
these streams only. Successful variance
reduction, as well as shortening simulation time,
thus serves the added advantage of pinpointing
bottleneck factors, presumably the point of such
studies in the first place.
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