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EXTERNAL CONTROL VARIANCE REDUCTION
FOR NONSTATIONARY SIMULATION

Michael R. Taaffe and Sheryl A. Horn
School of Industrial Engineering
Purdue University
West Lafayette, Indiana

A statistically efficient method for performing simulation experimentation of
nonstationary queueing models is outlined. The method utilizes a nonstationary

queueing approximation as an external

control variate system. A

gimple

nonstationary tandem gqueueing model serves as an example of this variance

reduction method.

1. INTRODUCTION

Efficient Monte-Carlo simulation experimentation
of nonstationary stochastic service systems is the
topic of this presentation. Realistic models of
stochastic service systems often require explicit
consideration of nonstationary components, Mean
arrival rates that vary with the time of day, mean
service rates or number of servers that are time-
dependent are often more appropriate modeling
assumptions than the typical stationarity
assumptions  about the arrival and service
processes.

If Monte-Carlo simulation experimentation is the
analysis method of a nonstationary system, then a
large number of replications of the experiment are
required. One simulation run of a nonstationary
system model yields just one observation point per
time unit. If the performance measure being
estimated in the experiment is a mean or variance,
for instance, a reasonably sized sample or set of
independent replications of the simulation is
required. Further, if properties of the
estimators of the measures of performance are of
interest, say a confidence interval for E(N(t))
(the estimate of the expected number in the system
at time t), then several sets of replications or
runs are required. Small confidence intervals for
estimates of means, for example, can result in a
number of simulation runs that is prohibitively
costly.

In one relatively simple simulation of a multi-
echelon inventory system, which the authors
performed, it was determined that tight confidence

intervals for the performance measure of interest-

required two million two hundred fifty thousand
simulation runs. Clearly efficient methods to
perform simulation experimentation with

nonstationary stochastic systems is needed.
Statistically efficient methods for simulation
experimentation of stationary queueing systems,
especially networks of queues has been the subject
of much recent research (see [Iglehart, Shedler,
19801 or [Iglehart, Shedler, 1981] for instance)
however, statistically efficient methods for
simulating any sort of nonstationary systems have
not been widely reported in the 1literature
[Fishman, 1979].

Of course analytically deriving performance
measures, or at least theoretically exact
numerical algorithms, result in estimates with
zZero variance. In general analytic and numerical
approaches to modeling nonstationary system are
unavailable. For the special case of stochastic
system models driven by Nonstationary Poisson
Processes and random variables with exponential

distributions with nonstationary means, a
theoretically exact numerical solution is
available. Numerical integration of the
Kolmogorov forward equations is a simple and well

known method of generating time-dependent measures
of performance, of stochastic system models such
as E(N(t)) for a M(t)/M(t)/1 queueing system. The

problem quickly encountered when using the
numerical approach is the combinatorial
probability and dimensionality problem.

Multivariate stochastic service systems  have
state-spaces that become unmanageably large very
quickly as the complexity of the system increases,
Numerically integrating hundreds of Kolmogorov
difference~differential equations is quite easily
accomplished, but when the number increases to
tens of thousands or more the computational
demands are too great for practical modeling use,

For example a M(t)/M(t)/1/K queue has one hundred
and one states (thus Kolmogorov equations) for k
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(capacity) of one hundred. Two M{t)/M(t)/1/k
queues linked in a tandem manner have ten thousand
two hundred one states/equations for
k1 = k, = one hundred. A single M(£)/M(5)/1/k
queueigg system ‘that recognizes five priority
classes of entitiesfhas approximately four hundred
sixty million states/equations for k of one
hundred. Clearly  the theoretically  exact
numerical solution is only practical for the
simplest cases.

External Control Variates wused in Monte-Carlo
simulation experimentation 1s a method that can
combine the analytic and simulation approach, The
method of analysis for nonstationary stochastic
systems being presented here is the wuse of a
nonstationary stochastic system approximation,
whose exact performance measure values are easily
computable, asg an external control variate. Both
problems outlined above (the 1large number of
replications of &he simulation approach and the
problem of impractical computational burdens of
the numerical approach) are directly attacked and
eased in the analysis method.

One purpose of a control variate in simulation
experimentation is  to reduce the number of
replications required to compute small confiderice
intervals for estimated performance measures (e.g.
E(N(t))). Control variates that perform well are
random variables that react in a similar manner to
random variation, as the random variables being
estimated (i.e. . correlated). External control
variates are random variables in a model that is
similar to the model of the actual system of
interest, or at least in a model that is believed
to be correlated in some respects with the model
of the actual system. In fthe case of External
Control Variates for a simulated nonstationary
queueing model, the exterpal control model, of
course, must be not only correlated with the real
model but also, must have available an exact
solution. The exact solution for the conbtrol
system can be the time~-dependent  performance
measures generated by numerically integrating the
associated Kolmogorov forward equations.

The Kkey issue in developing external control
variates for nonstationary simulation is the
development of control systems whose solution can
be conveniently generated Dby numerically
integrating a small number of Kolmogorov
difference~differential equations. Sueh a control
system for the sample tandem queue will be
described next.

2, THE SIMPLE TANDEM QUEUE

Figure one describes a simple tandem queueing

. network.

The number of étates/Kolmogorov equations required
to deseribe the time-dependent behavior of this
system is (k1 + 1) ° (k1 + 1),

An approximation for tandem queues developed by
Taaffe and Clark [1982] can also serve as a
control system for tandem queueing models. As
described in [Taaffe, 1982] the approximation is
an approximate solution to the exact problem
described above. Essentially if thé following
approximation is made

PT‘(N1(’(‘.):i,N2(t)=0)=‘Pr‘(N1(t):’i)Pr‘(Na(t):O) (1

_Then the departure process from node one is a
Nonstationary Poisson Process; thus the system can
be analyzed via (k, + 1) + (k, + 1) Kolmogorov
equations. Note 31) is n&6t as strong an
agsumption as an independence assumption, The
approximation provided excellent results for cases
studied. For more details see [Tadffe, 1982].
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TANDEM QUEUE
Figure 1

where Ni(t> = ngmber of entities at node i at
time ¢
Ki system capacity (queue and
service) at node i

|

ki(t) = mean rate of the time dependent
Poisson grrival process at node i
at time t

ui(t) = mean rate of service at node i at
time t for the time dependent
exponential service times

Oi(t) = mean departure rate from node i at
time ¢

Ri(t) = mean faﬁe arriving entities at
node i are lost to the system due
to lack of queue space at time t.

So for the tandem queue control system two hundred
two differehﬁial equations instead of ten thousand
two hundred one for the case k., = k. = 100 are
required. 1 2

Given a control system, the variance reduction
method for the quantity of interest, say E(N,(t))
for wvarious values of £, 1is quite strgight
forward. An excellent review of control variates
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and their use in simulation experimentation is
available in Lavenberg and Welch [1981].

In particular, using the notation of Lavenberg and
Welch:

Let p = E(Nz(t)) - quantity of interest
k
y =1k 2 Na(t) - random variable representing
i=1

the average number at node 2 at time t
over k runs

Kk .
So E(Y) = E(i/k z N2 (t) = u
i=1 “i
k o}
C=1/%k I N2 (t) - The control variable
i=1 71
Where Ng (t) = number of entities at
i
node 2 at time t during run i of
the control system

k
So B(C) = E(1/k I NS (8)) =
i=z1 i
Note: E(Ng (£)) = u, is available via numerical
i
integration of the Kolmogorov forward
equations associated with the control system

So if y(0) =y = b(C-u), bE |{ Ten ¥(o) is a

family of random variables with the property
E(¥(b)) = u - buC + buc = (2)

i.e. the expectations of the random variables Y(b)
are the same as the expectation of Y, the variable
of interest. Also

2

Var(Y(b)) = Var(Y) + b"Var(C) - 2b Cov(Y,C) (3)

so if Cov (¥,C) is 1large, then Var (Y,(b)) is

smaller than Var (Y) and a variance reduction is
achieved. Details of implementation of this
external control variate system include the

estimation of optimal values for b (i.,e. B), as
well as estimates of the indicated variances and
covariances. These details are made clear in
[Lavenberg, Welch, 1981] and [Law, Kelton, 1982].

3. SUMMARY

In the simple nonstationary tandem  queueing
network, a simple variance reduction scheme making
use of a control system has been outlined. The
control wused 1s a nonstationary tandem queueing
model approximation. Significant variance
reductions, thus significant simulation
experimentation efficiency increases, can be
expected for implementations of the outlined:
method. In general excellent variance reduction
can be achieved for nonlinear model parameter
estimation' using control variates [Swain,
Schmeiser, 1982]. The simple nonstationary tandem
queueing system discussed in this presentation,
can easily be extended to larger more complex
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nonstationary system approximations
used as control variate systems. The resulting
increase in efficiency of simulation
experimentation of nonstationary systems may be
quite substantial.

systems and
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