Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

271

AN EXPERIMENT IN MICROPROCESSOR~BASED
DISTRIBUTED DIGITAL SIMULATION

Dana L. Wyatt
Instructor
Dept. of Computer Science
Texas A&M University
College Station, TX 77843

Sallie Sheppard
Associate Professor
Dept. of Computer Science
Texas A&M University
College Station, TX 77843

Raobert E. Young
Associate Professor
Dept. of Industrial Engineering
Texas A&M University
College Station, TX 77843

This paper discusses the design of a distributed simulation system which will

utilize off-the-shelf microprocessors in its implementation.

Alternative ap-

proaches to the assignment of simulation functions and processes are presented.

A project currently underway at Texas A&M University is described which considers
the impact of distributed architectures on the design of simulation language
support systems. The emphasis in this research project is to produce an opera-
tional prototype which can be used to establish the feasibility and utility of

distributed simulation.

1, INTRODUCTION

Simulation has long been recognized as a useful
tool in the solution of many types of problems
not easily solved using analytic techniques.
However, one of the primary disadvantages of sim-
ulation is the sizable amount of computer time
and mainframe hardware typically required to exe-
cute complex models. This problem is especially
acute in applications where a real-time solution
is desired.

The traditional approach for applications where
time is crucial has been to utilize large main-
frames because of their speed. .However, these
mainframes are very expensive. An alternative
approach which has been advocated as a means of
economically increasing computing power is to
concurrently employ multiple smaller processors
in the solution of a single problem (Scherr 1978).
Such an approach offers not only initial savings
in hardware cost, but also cheaper maintenance
costs since each modular component is simpler
and can be more easily repaired when required.

The parallel use of multiple prbcessors as a
means of increasing computing power has not yet

This material is based upon work supported in
part by the National Science Foundation under
Grant No. ECS-8215550

become widespread, primarily because such computer
architectures require special algorithms to take
advantage of the hardware. Additionally, not all
application areas are amenable to such parallel
algorithms. However, simulation applications
typically utilize unique structures which allow
task separation and desynchronization, basic pre-
requisites for parallel processing. Research
reported in the Titerature has indicated that this
mul tiprocessor approach has been successfully
followed n continuous simulation systems with
some complete systems in existance (Halin, et al
1980, O'Grady 1979).

A project is currently underway at Texas A&M Uni-
versity funded by a grant from the National Science
Foundation in which a microprocessor-based distri-
buted digital simulation system is bein developed
{Sheppard, Phillips and Young 1982). The emphasis
in this research is to produce an operational
prototype which can be used to establish the feasi-
bility and utility of distributed simulation. The

- research objectives are:

1. To conceptually design a simulation lan-
guage and support environment based upon
distributed processing,

2. To implement these constructs through
the construction of an executable simu-
Tation system, and

CH1953-9/83/0000-0271 $01.00 © 1983 IEEE

272 Dana L. Wyatt, Sallie Sheppard, Robert E. Young

3. To evaluate the feasibility and utility
of distributed simuiation.

Research related to a simulation support develop-
ment environment developed is described in a
companion paper {Reese and Sheppard 1983).

2. DISTRIBUTED SIMULATION

A distributed simulation system could be defined
as a distributed computer system upon which sim-
ulation applications are implemented and executed
in a parallel manner. Such a system provides
simulation facilities in a distributed computing
environment. -)

The term distributed computing system fis one over
which considerable controversy has emerged, Re--
searchers are unable to agree on a completé, -
concise definition (Eckhouse-and Stankovie 1978).
However, a working definition of ‘the term speci-
fies that "a distributed system consists of a
collection of distinct processors which are
spatially separated, and which communicate with

one another by exchanging messages"* (Lamport 1978).

Two approaches are possible to the implementation
of discrete simulation in a distributed manner,
with the differentes based on which sjmulation
functions are distributed to the available pro-
cessors. Distribution is possible by simulation
support function and by model function.

2.1 Separation By Simulation Support Function

Current simulation Tanguages are executed sequen-
tially because they are written in. a standard
environment designed for sequential execution.
However, a task analysis of typical simulation
applications indicates many activities can be
jdentified whose execution does not require syn-
chronization with other simulation aétivities.
Such activities can be classified as either anti-
cipatory in nature or non-jnteractive.

An "anticipatory activity" is an.activity whose
need can be anticipated and performed in advance.
An example is random number generation, A "non-
interactive activity" is one whose performance,
once injtiated, has no immedjate impact upon the
other activities. An example would be inserting

Identification and examination of anticipatory

and non-interactive actitivies allows them to be
grouped into specific categories. Within each
category exist activities which are interdependent
upon one another. In a multiprocessor environment,
each activity -category becomes a candidate to be
assigned its own processor. Such a system would
run asynchronously and in parallel with one pro-
cessor dedicated to system management wHile the
other processors were responsible for handling

the varjous activity categories.

Discrete simulation application processing typi-
cally involves such activities as random number
generation, data input/output, statistics col-
lection and processing, filing, etc: Thus, by
distributing the simulation support functions. over
the available processors while executing the model
functions in the traditional sequential manner
(see Figure 1), it is possible to gain some ad-
vantages of parallel processing without the
significant problems. of synchronizZation and dead-
lock protection found when using the alternate
approach.

2.2 Separation by Model Function

Real systems for which models are typically
constructed are inherently parallel with asyn-
chronous operation of the components. Distribution
of the model functions -based upon this' inherent
parallelism of the real system involves the para-
11el execution of the process (eventg routines as
described by the model (see Figure 2}. Those
processes which occur in.-parallel in'the real
system could be simulated in parallel in the
distributed simulation system. .

This approach is esthetically pleasing because it
allows the physical components of the world which
occur in paraliel to be truly executed as such in
the simulation. With an appropriately designed .
langauge, the model builder could use the observed
parallelism in creating the model rather than
being forced to mentally reconfigure the problem
to match the sequential constraints of, for ex-
ample, event-oriented languages. The result
would be similar to a process-oriented language
such as SIMULA (Dahl, Myhrhaug and Nygaard 1968),
which could actually execute in parallel.

This approach, however, is considerably more dif-
ficult to implement as theré are at least three

an entity into a queye.

SUPERVISOR
EVENT | FILING DATA STATISTICS| [RANDOM NO.
ROUTINES SYSTEM 1/0 COLLECTION| |GENERATION

Figure 1: Simulation Distributed by Simulation Support Function

Microprocessor-Based Distributed Digital Simulation 273
EVENT EVENT . . . EVENT |- EVENT
ROUTINE ROUTINE ROUTINE ROUTINE
Figure 2: Simulation Distributed by Model Function

new problems introduced over those encountered in
the hierarchical approach. First, the simulation
language itself will require additional facilities
not typically included in present simulation lan-
guages,.in order to allow the model builder access
to and control of the parallel capabilities.

Secondly, resource allocation becomes a problem.
Although logically one would expect each process
.to be assigned to a separate processor, some
realistic constraints must be imposed based on

the number of actual processors available. Ideally,
these constraints should be transparent to the
model builder.

The third problem involves the synchronization
and deadlock protection among the processes. With
each routine assigned to its own processor and
all processors running in parallel, specific ac-
tions must be taken to synchronize their activi-
ties as required by the real world situations
being modeled. Without such synchronization,
some processes may "get ahead" of others and in-
correctly model interdependencies in the system.
Deadlock may occur if two or more processes are
waiting on each other with forward progress of all
being blocked. Although a hierarchical configur-
ation of the processors solves most of the prob-
lems of synchronization and deadlock protection,
a configuration without a central supervisor is
needed to maximize the distribution and desyn-
chronization of processes. Such an arrangement,
however, introduces problems of synchronization
and the possibility of system deadlock complicates
interprocess communication and data sharing.

3. {PREVIQUS RESEARCH

Research in the area of distributed discrete sim-
ulation has only been reported in the past few
years. Two primary research efforts were reported
by the University of Texas at Austin-(Chandy,
Holmes and Misra 1979, Chandy and Misra 1981),
and the University of Waterloo (Peacock, Manning
and Wong 1979, Peacock, Wong and Manning 1980).
These two efforts represented part of a joint
program whose goal was to solve parallel problems
using message-switched networks. Additionally.,
there have been other independent research pro-
Jects in distributed discrete simulation (Bryant
1979, Comfort 1982, Reynolds 1982, Wittie 1978).

With one exception, these research efforts have
dealt primarily with distributed simulation im-
plemented with the distribution of tasks to the
processors made through model function. Because
of this, research efforts to date have dealt
mostly with such topics as the location and con-

trol features of the simulation clock, communica-
tion facilities and protocols between processes,
synchronization and control of the processes,
resource allocation among the processors, and data
sharing capabilities.

The only research effort found which deals with
distributed discrete simulation implemented in the
hierarchical manner of Figure 1 is the work of
Comfort (1982). He developed a system using a
PDP-11 as the principal processor and distributed
the event set processing to a M68000 microproces-
sor. He has been fairly successful, programming
the PDP-11 in FORTRAN-IV PLUS and the M68000 in
assembly language. The emphasis of his research
has been in the performance of the system and how
it varies with different interconnection and buf-
fering strategies rather than on simulation lan-
guage concerns.

The performance degredation due to dynamic dead-
lock detection and prevention inherent in the
distribution by model function is severe enough to
warrant many investigations into alternative ap-
proaches to distributed discrete simulation.
Multiprocessor systems with architectures using a
hierarchical structure have been suggested in the
literature (Elizas 1979, Enslow 1977) and are being
investigated in the system being developed at
Texas ABM University.

3.1 Simulation Languages

There are no parallel or distributed Tanguages
commercially available which are designed speci-
fically for simulation. Quasi-parallel simulation
languages do exist, in the form of process-oriented
discrete languages. One of the first of these was
SIMULA. SIMULA allows the programmer to specify
the system in terms of a number of concurrent,
synchronized processes. However, these processes
are interleaved so that they can be executed in a
sequential manner. Since SIMULA was introduced,
other process-oriented languages have appeared.

The popularity, availability, and economic advan-
tages of microprocessors has recently had an
impact on simulation languages. Byrant (1981a)
has been exploring the use of microprocessors as
a host computer for a simulation Tanguage. He
has developed Micro-SIMPAS, a Pascal-based simu-
Tation language for microcomputers. Although he
found that the microprocessor software was suf-
ficiently powerful to support simulation, the
microprocessor hardware available at the time was
not fast enough to make simulation feasible. Dis-
tribution of the werkload over several micro-
processors should advantageously affect the per-
formance of simulation on microprocessors.

274 Dana L. Wyatt, Sallie Sheppard, Robert E. Young

3.2 Distributed Languages

As the construction of general purpose systems
from smaller processors has become widespread,
many of the conventional programming languages can

no longer be easily adapted to run on these multi-

processor systems (Silberschatz 1980). As a re-
sult, a new group of languages is beginning to-
emerge, These new languages may be classified
into two types according to the type of communica-
tion facilities they use: those that are based
on buffered messages (e.g. .PLITS (Feldman 1979)
and E-CTu (Liskowv 1979)) and those based on syn-
chronous unbuffered messages (e.g. DP (Brinch
Hansen 1978), CSP (Hoare 1978), and AdaR (Notkin
1980)). Each-of these is specifically designed
to be run on a multiprocessor computer system.
However, the features typically included in simu-
lation Tanguages are not part of any of the dis-
tributed Tanguages.

4. DISTRIBUTED SIMULATION SYSTEM DESIGN

The design of the distributed sinulation system
currently being developed at Texas A8M University
is based on the hierarchical architecture of Fig-
ure 1 in which the simulation support functions
are distributed to the available processors. Two
operational prototypes are being constructed based
on different existing simulation Tanguages: SIMPAS
(Bryant 1981b) “and GASP- IV. (Pritsker and Young
1975), After experience and insight has been’
gained from these prototypes, the alternative ap-
proach, distribution based on model function, will
be considered, The work presented in the remain-
der of this paper concerns the prototype based

on SIMPAS.

SIMPAS is a strongly typed, event-oriented, dis-
crete simulation language based on Pascal. It is
implemented as a preprocessor which dccepts as
input an extended version of Pascal and produces
a standard Pascal program as output. This enhan-
ces the transportability of the language.

The extensions to Pascal which SIMPAS incorpor-
ates are similar to those of SIMSCRIPT. A simu-
lation program written in SIMPAS can be divided
into seven basic parts: global label declarations,
global constant declarations, global type declara-
tions, global variable declarations, procedure
and event declarations, and the main procedure.

A SIMSCRIPT-Tike entity can be created in SIMPAS
using the following declarations:

type
ship = queue member
" ship_id 1 integer;
arrival_time ¢ reals
unloading_time T reals
Toading_time : real;
end;

ship_gueue = queue of ship;

RAda is d registered trademark of the U.S. Depart-
ment of Defense.

var
tanker : ship;
freighter : ships

harbor_line : ship_queue;

To refer to the particular attributes of an en-
tity, 'one would use the Pascal dot notation
referring to fields of a record:

tanker.arrival_time
or’
freighter.loading_time

The SIMPAS extensions to Pascal consist of "new"
statements which have specific simultion func-
tions. Samples are given in Table 1.

STATEMENT DESCRIPTION
INCLUDE to include Tibrary pseudo-
; random number generation

routines

ISTART SIMULATION to begin execution of the
events

SCHEDULE to create events and in- .

‘ sert them into the event -
set

CANCEL d to remove a named event
from the event set

‘DESTROY ' to dispose of a previously]
canceled event

‘RESCHEDULE‘ vto reschedule the current
event at a Tater time

INSERT ‘ ~ to insert eﬁtities into a
queue

REMOVE to remove entities ?rom
a queue

FORALL to scan the members of a
queue

Table 1: Sample SIMPAS Simulation Statements

In addition to these statements, a new type of
procedure is available to indicate the actions
which occur during the execution of an event. An
event declaration has exactly the same form as a
Pascal procedure declaration, except that the word
"EVENT" replaces "PROCEDURE" in the declaration,
The only restriction on event declarations is that
they may not be delcared Tocal to a procedure or
another event ‘in order to allow them to be acces-
sable from the event set scaniing routines.

The first phase of this research project involved
implementing SIMPAS on a Texas Instruments 990/12
minicomputer. The execution of a SIMPAS program
is a two step process. First, the SIMPAS program
must be processed by a preprocessor. The SIMPAS

Microprocessor-Based Distributed Digital Simulation 275

preprocessor is divided into two passes, with the
first being a parser, of sorts, and the second
expanding the SIMPAS statements into Pascal code.
The Pascal output of the preprocessor must then be
compiled. Only then can the object program be
run. Even though this translation process is
slow, the selection of SIMPAS proved valuable be-
cause of the ease in which its preprocessor is
being modified to produce a Pascal program to be
executed in a distributed manner.

4.1 Emulation of the Distributed Simulation
System

The TI 990/12 minicomputer system being used in
this research project is a 16-bit minicomputer,
It is being used both as a software development
system and as an emulator for the prototype dis-
tributed simulation system. The TI 990/12 allows
multitasking of up to 8 64K byte processes, which

corresponds’ exactly .with the actual microprocessor
network targeted as the prototype hardware. Com-

munication among the tasks on the TI 990/12, be-
cause of constraints imposed by the operating
system, is through a global common data area using
semaphores for synchronization. T

An analysis of the SIMPAS lanaguage and preproces-
sor has produced an initial design of the distri-
buted simulation system consisting of five pro-
cesses {or tasks) as shown in Figure 3.

The standard version of the SIMPAS preprocessor
produces a Pascal program which is designed to

be executed in a sequential manner. ‘In order to
generate a program designed to be executed in'a
multitasking manner, the SIMPAS preprocessor is
being modified. Pass 2 of the preprocessor, in
whi:ch SIMPAS statements are expanded to generate
Pascal code to accomplish the specified task, is
being rewritten so that "calls" to the appropriate
task are generated. .

For example, SIMPAS expands the INSERT statement
to the appropriate set of Pascal statements to
allocate and Tink the specified entity into the
appropriate queue. These statements are being
replaced by a "call" to the filing system task.
Similarily, REMOVE will now invoke the filing
system task and force the event routine to wait
until the entity is available.

Random number generation routines running in par-
allel with the other routines will keep a supply
of numbers available so that the event routine
should not have to wait for a number. As a re-
sult, the Pascal program no longer "generates"
random numbers, per se; but rather it accesses

a predefined data area which contains a large
supply of random numbers. Only if no random num-
bers are available would it be required to wait

, for the generation of a number.

Statistics collection is being implemented as a
"passive task" which "watches" for specific
changes in.the data area. It then collects sta-
tistics similar to those of SIMSCRIPT. User-
defined statistics collection will still be

-executed in the event routine task.

It is the responsibility of the supervisor task
to.initiate each of the sub-tasks, providing
semaphores to control the message passing, and
monitoring an error flag area so as to intercept
and attempt to handle any errors which might arise
during the execution of the simulation program.

4.2 TImplementation on a Microprocessor Network

The implementation of the prototype distributed
simulation system was originally planned for a
network of 8 TI 990 microprocessors connected via
a multidrop network. - However. sihce the multidrop
network is very slow when passing the large quan-
tities of data, another architecture is seriously
being considered. Negotiations are underway to
acquire several Motorola 68000 based micro-
processors to be used in place of the TI 990
microprocessors.

5. CURRENT STATUS AND ANTICIPATED BENEFITS OF
RESEARCH

The first phase of this project involves the
selection of a simulation language and the initial
design of the distributed simulation system and has
been compteted. As of this writing, work has
recently begun on phase two. When completed, this
phase will produce a prototype discrete simulation
language implemented on a minicomputer in such a
manner that it emulates a distributed discrete

SUPERVISOR,
ERROR HANDLER &
GLOBAL DATA

RANDOM
NUMBER STATISTICS
GENERATION COLLECTION

EVENT
ROUTINES FILING
~ AND SYSTEM
DATA 1/0
Figure 3:

A SIMPAS-based Distributed Discrete Simulation System

276 Dana L. Wyatt, Sallie Sheppard, Robert E. Young

simulation system. Observations on this protgotype
will then be made as to the amount and type of
interprocess communication which occurs in this
method of distributing simulation support func-
tions, allowing recommendations to be made con-
cerning multi-microprocessor architecture and
hardware requirements to be used for implementa-
tion. Additionally, alternative approaches to
the hierarchical architecture selected for this
project will be examined to determine their
practicality and the impact they might have.on
the simulation language design. Once these tasks
" have been completed, the implementation of the
distributed simulation system will begin on a
microprocessor network.

Although other researchers have designed distri-
buted discrete simulation systems, this research
differs in three important ways:

1. Most designs for distributed discrete
simulation call for impTlementation
through the distribution of the model
functions, introducing severe problems
of synchronization and deadlock~pro-
tection. This research explores an
alternative hierarchical approach that
contains no major synchronization or
deadlock protection problems.

2.. Most research in-distributed discrete
simulation has been in the physical de-
sign of the system, with emphasis placed
on deadlock detection mechanisms and
performance issues. This research shifts
the emphasis to the software aspect, and
in particular, the implementation require-
ments of a simulation language which uses
the distributed architecture.

3, This research will provide statistics and
_ observations made on the amount and type
of interprocess communication foeund in
modularized simulation applications.

When completed, this research will determine the
requirement specifications of a multi-micropro-
cessor architecture for implementation of a
hierarchical approach to simulation and provide
an operational prototype for determining the
feasibility and utility of distributéd discrete
simulation implemented in a hierarchical manner.

REFERENCES

Brinch Hansen P (1978}, Distributed Processes: A
Concurrent Programming Concept, Comm. ACM, Vol.
21, No. 11, pp. 934-941.

Bryant RE (1979), Simulation on a Distributed
System, 1979 Distributed Computing Systems
Conf., pp. 544-552. -

Bryant RM (1987a), Micro-SIMPAS: A Microprocessor-
based Simulation Language, Proc. 14th Annual

Simulation Symp.

Bryant RM (1981b), SIMPAS Users Manual, Dept. of
Computer Science and Academic Computing Center,
University of Wisconsin - Madison, Madison, WI.

Chandy KM and Misra J (1981), Asynchronous Distri-
buted Simulation via a Sequence of Parallel
Computations, Comm. ACM, Vol. 24, No. 11, pp.
198-206.

Chandy KM, Holmes V and Misra'd (1979), Distributed
Simulation of Networks, Computer Networks,
Vol. 3, No. 1, pp. 105-113. .

Comfort JC (1982), The Design of a Multi-Micropro-

cessor Based Simulatjon Computer ~ I, Proc. 15th

Annual Simulation Symp., pp. 45-53.

Dahl 0J, Myhraug B\and Nygaard K (1968), SIMYLA
67: Common Base Language, Norwegian Computing
Center, Forskringsveien 1B; 01so 3, Norway.

Eckhouse RH and Stankovie JA (1978), Issues in
Distributed Processing - An Overview of Two
Workshops, Computer, Vol. .11, No. 1, pp. 22-26.

Elzas MS (1979), What is Needed for Robust Simu-

Tation in Methodology in Systems Modelling and
Simulation, (ed.) B.P. Zeigler, et. al., North-
HoTTand Pub., Amsterdam, pp. 57-91.

Enslow PH (1977); Multiprocessor Organ%zation -
A Survey, Computing Surveys, Vol. 9, No. 1,
pp. 103-129.

Feldman JA (1979), High Level Programming for
Distributed Computing, Comm. ACM, Vol. 22,
Vol. 6, pp. 353-368.

Halin HJ, et al (1979), The ETH Multiprocessor
Project: Parallel Simulatjon of Continuous
Systems, Simulation, Vol. 35, No. 4, pp. 109-
123.

Hoare CAR (1978), Communicating Sequential Pro-
cesses, Comm. ACM, Vol. 21, Vol. 8, pp. 666-
677. .

Lamport L {1978), Time, Clocks, and the Ordering
of Events in a Distributed System, Comm. ACM,
Vol. 21, No. 7, pp. 558-565,

Liskov B (1979), Primitives for Distributed Com-
puting, Proc. 7th Symp. on Operating Systems
Principles, pp. 33-42. °

Notkin DS (1980), An Experience with Parallelism
in Ada, SIGPLAN Notices, Vol. 15, No. 17,
pp. 9-15.

Microprocessor-Based Distributed Digital Simulation

0'Grady EP (1979), Interprocessor Communication
in Multiprocessos Simulation Systems, Proc.
COMPCON, pp. 300-306,

Peacock JK, Manning E and Wong JW (1980), Syn-
chronization of Distributed Simulation Using
Broadcast Algorithms, Computer Networks,
Vol. 4, No. T, pp. 3-10.,

Peacock JK, Wong JW and Manning EG (1979), Dis~
tributed Simulation Using a Network of Pro-
cessors, Computer Networks, Vol. 3, No. 1,
pp. 44-56.

Pritsker A and Young RE (1975), GASP-PL/I: A P1/1
Based Continuous/Discrete SimuTation Language,
Pritsher and Associates, Inc, Fayetteville, IN.

Reese RM and Sheppard SV (1983), A Software Devel-

opment Environment for Simulation Programming,
Proc. 1983 Winter Simulation Conference.

Reynolds PF (1982), A Shared Resource Algorithm
for Distributed Simulation, Proc. 9th Annual
Symp. on Computer Architecture, pp. 259-266.

Scherr AL (1978), Distributed Data Processing,
IBM Systems Journal, Vol. 17, No. 4, pp. 324-
343,

277

