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RESEARCH SUMMARY

1. INTRODUCTION

We discuss a deadlock-free distributed simulation
algorithm that improves upon the performance and
resource requirements of previously proposed
algorithms. Our approach is based on the notion
of active logical processes. A more detailed
discussion of active logical processes can be
found in Reynolds (1983).

Distributed discrete event simulation algorithms
typically consist of networks of cooperating
asynchronous logical processes, where a logical
process (LP) is a representation of a correspond-
ing physical process (Chandy, 1979). A distribe-
uted simulation algorithm determines how a network
of LP's representing an underlying physical system
will interact so that the order of events in the
underlying physical system is maintained. A given
algorithm will determine such key factors as the
final completion time (performance), whether the
simulation will deadlock (even if the underlying
physical system would not), and the resource
requirements in the system that supports the
simulation. No distributed simulation algorithm
proposed to date can be considered optimal for all
possible weightings of these factors, and, indeed,
such an algorithm may not exist.

Algorithms which preserve the proper sequencing of
events throughtout the course of a simulation have
been characterized as Mconservative" (Jefferson
1982). Conservative algorithms include Bryant's
(1977) infinite buffers algorithm, Peacock's
(1979) blocking condition and 1link time algo-
rithms, Chandy's (1979) null messages algorithm
and Chandy's (1981) distributed deadlock detection
and recovery algorithm. All but the last of these
algorithms is deadlock free a priori; the last
uses detection and recovery. More recently
Jefferson (1982) has proposed the time warp
algorithm, which allows LP's to block only when
they have no work to do, thus preventing deadlock.
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In each of the algorithms mentioned the prevention
or detection of deadlock can adversely affect
performance, The blocking algorithm requires a
potentially high degree of connectivity among
processors, and is likely to incur high communi-
cation costs (Peacock, 1979). The link time, null
message and infinite buffer algorithms allow an LP
to communicate only with immediate predecessors
about its blocked state, thus reducing communica-
tion costs, but adding the requirement that at
least one LP in each directed cycle of LP's be
able to predict a future interval of time in which
the LP will not send a message to any other LP!s,
The performance of the deadlock detection and
recovery algorithm depends on the frequency of
deadlocks; a high frequency would adversely affect
finsihing time. The time warp algorithm must
maintain input and state histories which can grow
in proportion to the number of events simulated.

We regard low connectivity and bounds on required
resources that are independent of the number of
events being simulated as important criteria for
measuring the worth of a distributed simulation
algorithnm. These goals tend to enhance perfor-
mance as well. The null message and link time
algorithms meet these criteria best, but their
performance suffers as a result of the frequent
transmission of unnecessary messages. Thé SRADS
algorithm (Reynolds, 1982) also meets our stated
criteria and it reduces the number of unnecessary
messages transmitted. We discuss the expected
behavior of this algorithm next.

2. ACTIVE LOGICAL PROCESSES

The 1link time and null message algorithms employ

passive LP's. A passive LP is driven by messages

from other LP's, Until it receives these required

messages it is blocked. The generation of null

messages and predictions is done by LP's for each

of the 1links that they may write to, whether or .
not the LP's that read from those links need them.

The result is the generation and transmission of

many unnecessary messages. See (Chandy, 1981).
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Active logical processes (ALPs) employ an alter-
nate view: a writing LP should generate a pre-
diction or a null message only when a reader indi-
cates that it is blocked. Also, when feasible,
readers should perform predictions in order to
spare the cost of having writers generate and com-
municate them. He,eonsider these alternatives.

An ALP-based network consists of LP's and shared
facilities (SF's), where an SF is a single oeil
repository for messages. LPts communicate
exclusively through SF's; any ALP-based network
can be represented as a bipartite graph of LP's
and SF's. An LP is comnected to that set of SF!s
from which it can read or write. In order to read
from or write to an SF, an LP must agcesg it,

Consider the following sequencing requirement
which has been derived from (Lamport, 1977). A
write (read) access to SF by LPi must satisfy: \

'

SR: For any reader (writer), LPj, connected
to SF, it is réquired that .ci £ cj, where

Ci is LPi's current simulation time,

Implicit din this algorithm is the assumption thét
an LP can predict the appropriate times to read
from an SF. This is the case when exact write
times, or exact potential write times, are known.
If exact wWrite times are known, all intermediate
synchronizations  (unnecessary messages) at
potential write times are disecarded, leading
inevitably to improved performance. However, even
if a reading LP must "poll" .4t potential write
times, whenever the reading LP appliés SR and
finds the simulation time of the writing LP ahead
of its own, it can diseard all polls in the
interval up to the writing LP's simulation time,
We have determined both in analytic and in
simulation studies that a asignificant number of
polls can be discarded, leadihg to a significant
improvement in performance. In effect we have
found a method for discarding a significant number
of the wunnecessary messages that would be
transmitted in the null message and link time
message algorithms,

If potential write times cannot always be
predicted then the algorithm given above will not
always give correct results; it is possible for an
LP to read from an SF at a simulation time that is
greater than the simulation time at which the last
write was performed. This time slip can result in
an LP simulating events out of sequence. To
prevent this we must put the burden of prediction
onto the LP's that write into these SF's.

For those SF's for which a reading LP cannot
predict potential write times, we can require the
peading LP to request future potential write times
from writing LP's. By placing the burden of
synchronization on reading LP's we have created
once again the potential for many predictions and

many potential synchronizations to be skipped. We

have compared the null message -and link time
algorithms with this new method and found that the
new method has smaller finishing times unless
writing LP's write very frequently and at every
potential write time,

Finally,
approaches we have

it is possible to combine the two
proposed. Clearly, the
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approach where 2all predictions are incorporated
into reads yields better performance than the
approach where all wyriters are calléd upon ‘to make
predictions. However, the combined approach
yields performance that falls between the
performance of the other two. Thus, If we must
employ the combined approach, we know we can get
improved performance over both passive and active
LP algorithms that require writers to perform all
predictions, while still guaranteeing the proper
sequencing of events (i.e. a correct simulation).
We have found the combined approach to’ be useful
for the simulation of networks of logie.
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3. CONCLUSION

We have investigated placing the responsibility
for synohronization in LPis at the point where
they need to read a message from another LP, If
the element of prediction can also be incorporated
at the point where reads are performed then
significant improvements in simulation finishing
times can be realized. Even in the case where
such predictions cannot be made by a reading LP,
simply allowing predictions to be made on demand,
rather than as a matter of routine, can lead to
performance improvements. We have demonstrated
that our approach is superior, on the avérage, to
the link time and null message algorithms,
Lacking data on the performance of other
approaches, we can draw no further conclusions
about comparative performanoe.
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