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This paper presents methods to invert efficiently the distribution function of an
arbitrary positive random variable. Such methods preserve the monotonic
relationship between the random variable and the uniform deviate which generates
it. This relationship is necessary to reduce the variance of an estimator in
simulation experiments. For discrete distributions, an indexed search method is
employed utilizing variable spaced cutpoints. For continuous distributions, a
piecewise continuous increasing quadratic spline is fit to prespecified values of

the inverse distribution function. The index number of the piece is then

generated by the indexed search method.

The spacing of the cutpoints for the

search is chosen to minimize the expected number of comparisons required per

variate generated.

1. INTRODUCTION

Suppose that a positive finite random variable X
has distribution function, F(t)=P[Xst] for all

real t . The inverse distribution function may

be defined for O0su<l as

G(U)=infx20: F(x)2u} .

A straightforward way to generate X 1is to sample
a uniform (0,1) deviate U and to calculate
G(U) . This method, called the inverse distribu-
tion function method, is desirable and perhaps
costly.

This desirability stems from the observation of
Hoeffding (1940) that the antithetic variates

G(U) and G(1-U) achieve the most negative
correlation possible. See also Whitt (1976).
Fishman and Huang (1980) and Fishman (1983) use an
extension of antithetic variates called rotation
_sampling to significantly reduce the variation in
the sample mean generaged by a simu)ation experi-
ment. The cost of such a method is high for
arbitrary distributions since a search of the
distribution function is generally required. Even
when the distribution function is assumed to have
a certain form, say the exponential distribution,
the inversion operation may require expensive
operations, such as logarithms. Computationally
efficient inversion techniques applicable to
arbitrary distribution functions would allow the
benefits of the antithetic variate techniques to
be enjoyed more fully by the users of simulation.

2. DISCRETE DISTRIBUTIONS

Without loss of generality we will assume that X
takes on only positive integral values. Then the
inverse distribution function becomes for 0su<l.

G{u)=min{i: F(i)zu}

For arbitrary distributions a sequential search
takes j comparisons to identify X=j and thus
EX comparisons on average. As the architecture
of computers deveiopes the number of comparisons
will be the governing criteria in evaluating the
complexity of calculations. This is especially
true for the inversion of F 1if the values of
{F(i)} are tabled.

Chen and Asau (1974) first described an indexed
search procedure to calculate G . Fishman and
Moore (1981) analyzed such a procedure and demon-
strated its efficiency. Their procedure defined
the cutpoints

To=6((£-1)/M)

for £=1,2,...,M which are tabled during an
initial setup. Thus, if L[M U] , where [x]
denotes the integer part of x , then only the
integers between IL and IL+1 need to be

searched to identify X . The expected number of
comparisons necessary to generate a single deviate
is EX-I+1, where T is the average of the set of
cutpoints. An example is given which cemonstrates
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a s1gn1f1cant increase in efficiency over the
sequent1a1 search.

Instead of basing the cutpoints on a uniform

partition of the unit interval, variable spacing
may be emp1oyed as well. Ahrens and Kohrt (1981)
vary the spacing in the interval ((M-1)/M,1) to
handle Tong tailed distributions. In general, we

* . 5 N
wish to determine a set U -{ui, i=0,....,M} in
the unit interval with u0=l-uM=0‘ and cutpoints

M

;21(“1"”f-1)li .
cutset will minimize the averagé number of com-
parisons required to generate a $ingle devidte.

szG(uzfi) maximizing I= Such a

This problem is a form of the M-level quantizer
which was shown to have a solution by Trushkin
(1982) in the case that F has a log-concave
density. One may find an opt1ma1 quant1zer using
the method of Lloyd (1982). For computational
convenience the determination that u, SU<”3+1

should not require either expensive computations
or a sequent1a] search, a property the optimal
quantizer may not possess. In practice the use.of
J—JC/(MC -M+j) for j=0,1,...,M allows oné to

calcylate easily . L[MU(C- 1}/(c-u)] from the
uniform deviate U and to start the sequential
search at IL . This choice of cutpoints is

nearly optimal for concave distribution funct1ons
having 1ong upper tails when

€=0.5 + /0 T6 ¥ G(0.9)/G(0.1) . As ¢
the spacing of U" becomes more uniform.

increases

3. CONTINUOUS DISTRIBUTION

A R
In this section an approximant, G , to G will
be daveloped for a continuous distribution 3
“function F . The approximant will interpolate G
‘at prespeci f1 ed points

Kf{(y =‘G(‘x.),s.):x.+ X;s 150,1,0..,m3

called knots The quant1zer problem may be solved
to determine ah opt1ma1 set of knots if desired.
A piecewise 1ncreas1ng quadratic spline will be

emp1oyed for G Passow and Rouljer (1977) found
that such a function may not ex1st on a fixed K

‘but does exist on'a superset £ of K 'where the
added knots 1ie between the knots in K .

The approach taken here is to solve for hon-
negative {d } in the Tinear program

max'.z (yi—y ) min(d;_;.d; d.)

s.t. d +d WMELH for all i
whére Si=2(x1'xi—1)/(yi'yié1) . If'for any i
d'+d“]<s a new knot is added to K between

(Y515 X5- 1)‘aﬁd‘(,.,x‘) and a value. 'd, fis
ca1cu1ated The resulting K yields the desired
piecewise quadratic on K w1th m1n1mum non-~

negative slopes {di} . That is, & has as flat a

density as possible.

The use of é is a two-stép process. First, the
piece index J is generated from a uniform deviate
U using the procedure discussed in Section 2.

Then the quadratic function on that piece is

evaluated at U to obtain G . For an exact
evaluation of G, the second step may be followed

by a localized seéarch at G(U)
necessary.

if such is deemed
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