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A generalized semi-Markov process (GSMP) is a stochastic process description of
a large class of discrete-event simulations. GSMP's are defined, and some basic

properties of GSMP's are described.

It is argued that GSMP's provide a conve-

nient frame-work in which to analyze many questions of interest to practitioners.

1. INTRODUCTION

Consider the discrete-event simulation of a
single-server first-come first-serve G1/G/1
queueing system. Assuming that the customer
inter-arrival and service times form sequences
of independent and identically distributed
(i.i.d.) continuous random variables {(r.v.'s), a
sample realization of the queue is generated by
the following algorithm:

1. Set QUEUE = 0, ACLK = 0, SCLK = 0,
Q=0, T=0.

2. Generate a r.v. A with the inter-
arrival distribution. Set T = A.

3. If QUEUE > 0, go to 5.

4, Generate r.v.'s A,S with the inter-
arrival and service time distributions,
respectively. Set ACLK = A, SCLK = S,
QUEUE = 1.

5. If ACLK > SCLK, go to 7.

6. Put T =T + ACLK, Q = Q + QUEUE * ACLK,
SCLK = SCLK - ACLK, QUEUE = QUEUE + 1.
Generate A from the inter-arrival dis-
tribution. Set ACLK = A. Go to 5.

7. Put T=T+SCLK, Q = Q + QUEUE * SCLK,
ACLK = ACLK - SCLK, QUEUE = QUEUE - 1.
Generate S from the service distribu-
tion. Set SCLK = S. Go to 3.

Note that the steady-state queue-length of the
GI/G/I queue under study can be estimated by Q/T.
The key to the above simulation is the use of
“clocks" (ACLK, SCLK) which record the time to
the next event (either an arrival or departure).
When an event occurs, the state changes (QUEUE

is incremented or decremented by 1), and the
appropriate clock is re-set.

As is well known in the simulation community, a
wide variety of discrete-event simulations can be
handled in a similar manner. One specifies a set
of states and a set of events. The process of
interest is then simulated by running clocks
corresponding to all possible events in the
current state. When a clock runs down to zero, a
state transition occurs and the clock associated
with the trigger event is re-set; the remaining
clocks continue to run down. This procedure is
then repeated indefinitely.

In this paper, we shall discuss the class of
stochastic processes corresponding to discrete-
event simulations of the above type--the proba-
bility literature refers to such simulations as
generalized semi-Markov processes {(GSMP's). 1In
Section 2, we shall give a formal definition of a
GSMP; Section 3 discusses certain ergodic
properties of GSMP's. Section 4 is devoted to a
class of structural theorems for GSMP's known as
insensitivity resuits--these theorems show that
GSMP's possess a surprising amount of structure.
In Section 5, we present some concluding remarks.

2.  DESCRIPTION OF A GENERALIZED SEMI-MARKQV
PROCESS

As indicated above, a GSMP is a probabilist's
terminology for a discrete-event simulation of
the type described in Section 1. It should
therefore be no surprise that the basic compo-
nents of a GSMP are a set S of states and E of
events, together with a family of clocks
corresponding to the events. We proceed now
to formally define a GSMP; we will then show
how the GI/G/T queue can be viewed as a
special case.

We start by identifying the sets S and E with
non-empty subsets of the positive integers;
elements seS are regarded as states, and
elements ieE as possible events. For each:
state seS, E(s) is that subset of E consist-
ing of events possible in s. For each state
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seS, let C(s) be the set of all possible clock
readings in s:

c(s) = {cerlEl. ¢, > 0 iff ieE(s)}

(a component of ¢ is positive if and on]y if the
clock corresponding to that component is “active"
in state s).

We shall define the GSMP by first construecting a
Markov chain (M.C.) X o = (S C }, which records

the values of the state var1ab1e and clock
readings at successive transition epochs.
Clearly, the state space of Xn is given by

= U ({s}xC(s)).
seS

For a given element (s,c)eZ, we let

t* = t¥(s,c) = min{ci:ieE(s)}
* = ¢¥% = - *
. ¢ ci(s,c) c, t
i* = i*(s,c) = min{ieE(s):c? = 0}

hence, t* is the amount of time until the first
clock i* in E(s) runs down. When the clock i*
runs down to zero, a state transition occurs;
state s' is chosen with probability p(s';s,i*).
Some of the clocks in s, denoted by the set
0(s',s,i*) (the "old" clocks) continue to run
down in state s'; the rest of the clocks
jeE(s'), denoted N(s',s,i*) (the "new" clocks)
will have their clock values generated inde-
pendently from d1str1but1ons F(.,s',j,s,i*).

It is assumed that F(03;s",j,s,i*) = 0 and that
i* ¢ 0(s',s,i*). The trans1t1on kernel P of
{Xn : n > 0} can now be defined:

P((s,c),A) A

= p(s';s,i*)I Fa,;s',j,s,i*)u 1[0, a, ](c*)
JeN . 1 i€,

PLX qeAlX, = (s,c)}

where A = {s'} x {c'ec(s'):ci. < ai,ieE(s‘)},
and IB is the indicator function of the set B.

The M.C. {Xn:n > 0} just constructed is called

the generalized semi-Markov ordered pair (GSMOP).

Finally, the GSMP {X(t):t > O} assocjated with
{X :n > 0} is obtained by setting

X(t) = zs I[T T ](t)

n-]
where T =0, T = 5 t* (S )
0 k=0

.}
0 arr1va1
(for
(for

(2.1) Example (GI/G/1 queue) =
(states = qdeue - length), E {0
l=departure), E(0) = {0} E(n) =

n>1), p(n+1 n,0) = 1, p(n-13n,1
n> 1), and

{0,7,
L1
{0,1}
) =1
F('X;S' 301531*)
F(x3s',1,s,i%)

x}
x}

where A and D have the inter-arrival and service
time distributions, respectively.

P{A
p{D

b
<

I

As Example 2.1 indicates, GSMP's arise naturally
in the modelling of queueing systems. At the
expense of some additional notation, Example 2.1
can easily be extended to include networks of
queues involving complicated priority schemes.

For certain purposes, however, it turns out to be
convenient to allow the clocks to run down at
different speeds in djfferent states; this is
necessary, for example, in systems possessing
interruptible components. For a discussion of
GSMP's with speeds, see (Burman, 1981), (Hordijk,
1980), (Schassberger, 1978), (Whitt, 1980).
Nevertheless, our above class of GSMP's' is suffi-
cent for most modelling purposes. Furthermore,
much of our discussion in Sections 3 and 4 can be
extended to fnclude GSMP's with speeds.

3. ERGODIC THEORY FOR GSMP'S

Although GSMP's appear to possess 1ittle of the
structure common to elementary stochastic pro-
cesses such as finite~state M.C.'s, it turns out
that much of the ergodic theory for finite-state
M.C.'s carries over to GSMP's. This suggests

that the theoretical development of output analy-
sis for GSMP's should be mathematically tractable,
and that many of the results currently known for
finite-state M.C.'s should possess GSMP analogues.

We first need to review the basic theory for
continuous time M.C.'s. We recall that when the
state space is countably infinite, such processes
may not haye Timiting distributions; in fact, they
may even explode in finite time. Thus, in order
to guarantee the existence of 1imiting distribu-
tions, it is necessary to impose a finite state
space assumption. For a finite-state M.C.,
Timiting distributions always exist--however, the
distribution may depend on the initial state.

Turning now to GSMP's, assume that A.) |S|< =,

|E|< =3B.) there exists @ > K(s',3,5,1) > 0 such
that F(K(s 2Js8,7)38',3,8,1) = 1 for every 4-tuple
(s'.J,s,1).

(3.1) Theorem: 7.) Under A.) and B.), {Xn:n > 0}

has a timiting distribution. Ji.) If, in addi-
tion, the distributions F(+3s',j,s,i) are all
continuous, then {X :n > 0} has an invariant
distribution.

Proof: We metrize I as follows:
p((s'.c'),(s2,¢%)) = 1 ifs'# s2, or if
there exists ,JEE such that
e (c -C ) (cs -cJ <0

glc! - ¢ [, else
=1 !

Thus, two points (51,c1),(52,c2) are at unit
distance unless they share the same state compo~
nent, and all clocks are in the same order. Now,
observe that under B.), n is restricted to a

compact subset of Z, and, hence, by Prohorov's
theorem (B1111ngs1ey, 1968 p. 37), the measures

é§${xke'lxo = x})/n

are relatively compact; that is, there exists a
probability m such that
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n
(3.2) 1 ZP{Xje-IXO = x} = g(.)

—

nkJ=1

(= denotes weak convergence)--in other words,
Xn has a limiting distribution.

For i1,), observe that with our metric on I,
P(~,xn) => P(-,x) whenever X, * X, by the

continuity of the F's. Thus, for any real-
valued bounded continuous function f,

(3.3) (Pf)(x) A ECF(X)[Xg = x 3 > (PF)(x),

when X > X ie. (Pf)(+) is continuous. Now, by

the definition of weak convergence, (3.2)
implies that

n .
(3.4) _Li‘]((P‘]f)(x) + [E(y)m(dy)
n =
K

J
((P9k) (x) A E{f(XJ.)IXO = x}) for any bounded
continuous f. But by (3.3), Pf is also

continuous so (3.4) also holds with Pf sub-
stituted for f; thus

TE(y)n(dy) = £(Pf)(y)w(dy)
ie. m is invariant.]|
(3.5) Corollary: Let g:5S + |R, and suppose
that P{X{0)e-} = w(+). Then, under the con-
ditions of Theorem 3.1 ii.), there exists a

r.v. £ s.t.

(3.6) 1 sFq(X(s))ds » Z a.s.
t 0

Proof: By Birkhoff's ergodic theorem (see
Lamperti, 1977, p. 92), there exist Z,, Z, such
that o2

1 n-1 \

— 5 t%¥(§,,C,) =T -+ Z a.s.
N =0 k’7k n 1

1 n-1

—- R

m k)iog(sk) t (Sk,Ck) > 22 a.s.

from which it follows that

T

(3701 tngix(s))ds » 2,02, = L a.s.;
0

Tn

(3.6) is obtained from (3.7) by an approximation
argument. |

Theorem 3.1 and its corollary indicate that one
need impose only mild conditions in order to
obtain existence of Timiting and invariant dis-
tributions (in fact, B.) can be relaxed to
requiring finite means for the F's; see (Whitt,
1980). A.) is satisfied by most GSMP models for
closed queues). However, we emphasize that, in
general, the 1imit Z in (3.6) is a r.v. which
generally depends on the sample realization
through X(0)--this means, in analogy with the
M.C. case, that the state space T is not
irreducibie.

It is important to realize that this is not
merely a mathematical problem--Tack of jrreduc-
ibility is a very important topic from a
practitioner's viewpoint. It is important for a
simulator to be aware of the fact that the
system's long-run behayior may depend critically
on the initial condition used, and to take appro-
priate action. For example, irreducibility would
be violated in a simulation model of a queue
which becomes "deadlocked" under some initial
conditions, but not others. For such a model,
questions of irreducibility are clearly of prac-
tical import.

We conclude this section with a summary; we
showed, via Theorem 3.1 and its corollary, that
existence of invariant distributions is rather
simple to analyze. Our subsequent discussion
showed that the critical question, from a simula-
tion view-point, concerns the irreducibility of
the system.

4.  INSENSITIVITY THEORY FOR GSMP'S

It is well known that the Timiting distribution
of the M/G/= queue-length process depends on the
service time distribution only through its mean;
in other words, the 1imit distribution is "insen-
sitive" to the detailed form of the service
times. Over the last ten years, a number of
papers have investigated the extent to which this
insensitivity extends to discrete-event simula-
tions of the GSMP type; see {(Burman, 1981),(Helm,
1982) ,(Schassberger, 1977),(Schassberger, 1978a),
and (Schassberger, 1978b).

These papers show that insensitivity holds for a
broad class of GSMP's--for such GSMP's, it is
clear that one should estimate the steady-state
distribution by replacing the 1ifetime distribu-
tions F with distributions F', having the same
mean, but better simulation properties (eg. expo-
nentials or constant r.v.'s). Broadly speaking,
the general form of the results is that insensi-
tivity holds for a GSMP provided certain mass-
balance relationships are satisfied.

5.  CONCLUDING REMARKS

We saw, in Section 1 and 2, that GSMP's are a
probabiltistic description of a certain class of
discrete-event simulations. 1In Section 3, it was
shown that GSMP's often settle down to a steady-
state; however, the steady-state may depend on
the initial condition. As was indicated there,
much work remains to be done on the ergodic
theory for GSMP's particularly in terms of condi-
tions guaranteeing irreducibility. In Section 4,
the insensitivity theory for GSMP's was briefly
described--these results suggest that GSMP's
enjoy a certain degree of mathematical
tractability.

The central theme of this paper, however, is that
GSMP's provide a basic framework in which to
analyze an enormous class of simulations. We con-
clude with a partial 1ist of advantages deriving
from such a framework:

1) the possibility of a comprehensive
ergodic theory for discrete-event
simulations (partially illustrated
in Section 3)



42 ' _Peter W. Glynn

2y deve]opment of a toherent framewdrk
in which to consider statistical
ana]ys1s issues for discrete-event
simulations

3) the possibility of developing a compre-
. hensive and unified methodology for
variance reduction

&) ' the possibility of systematic
integration of sophisticated
statistical analysis tools into
simulation software packages.

)
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