Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

27

SIMULATION METHODOLOGY:
STATISTICAL ASPECTS

Gs Arthur Mihram, Ph. D.
Post Office Box No. 1188

Princeton, N,J.

08542

The present paper, of a tutorial nature, relates the literature of our simulation

methodology since the publication of SIMULATION:
METHODOLOGY [Academic Press, 1972 (1970)].

STATISTICAL FOUNDATIDNS AND
Explained will be the expansion of

its Principium of Seeding not only to the Fundamental and the General Principia

of Seeding but also to a Third Principium of Seeding.

Of courss, all three prin-

cipia relate to the procedurs(s) by which we simulationists can ensure that we
meet the conditions (e.q., independence, experimental error, blocking) of extant
statistical methodology, the conditions by which we may properly design and ana-
lyse experiments with a stochastic, cemputerised, and algorithmic (simulation)

model,

The paper (tutorial) will extend the current literature of statistical

and similation methodology by calling attention to a new class of pseudo-~random

number generators.

1. INTRODUCTION

A number of issues relating to the application of
statistical methodology have arisen since the pu-
blication of SIMULATION: STATISTICAL FOUNDATIONS
AND WMETHODOLOGY (1972). That book introduced the
Principium of Seeding as the principle by which
we simulationists can agsure that the simular res-
ponses (model outputs) which osur models generate
can be properly statistically analysed.

Though the Principium of Seeding remains valid,

it became clear to the present author that meny
practitioners were not sure of its motivation(s).
The Principium of Seeding was worded as two prin-
ciples (Mihram, 1974; 1976a; 1976b): the Funda-
mental Principium of Seeding and the General Prin-
cipium of Seeding.

The Fundamental Principium of Seeding ensures ran-
domness, statistical independence, and a proper
measure of experimentel error, whereas the Gene-
ral Principium of Seeding, when epplied, not only
assures that these three conditions for subsequent
statistical analysis will be met but alsc reveals
that experimentation with random numbsr seeds per
se has a very limited application in simulation
methodology. The General Principium of Seeding,
nonetheless, reveals the condition under which
the statistical technique known as random block-
ing (also called 'variance components') can be
applied in simulation methodology (i.e., in simu-
lar experimentation),

A Third Principium of Seeding was subssquently

us simulationists,

introduced (Mihram, 1979) when it became clear
that our special-purpose simulation programming
languages were failing to enforce adequate disci-
pline on simulationists conducting simular exper-
imentations with a stochastic model. The need

for meeting the statistician's requirements for
randomness, statisticel independence, and exper-
imental error can readily be forgotten by ana-
lysts whenever the simulation progremming language
used to author the model does not itself require
that the seed specifications be conducted in ac-
cordance with the Principia of Seeding. The Third
Principium of Seeding was introduced in order to
correct a tendency among simulationists to believe
that one pseudo-random generator is "better" than
another (of the same class) of differing parame-
ters. Since the multiplicative and mixed congru-
ential pseudo~-random generators are merely card-
shufflers, no one shuffling (parameter specifica-~
tion) can possibly be better than any other pro-
per shuffling.,

The present paper will then discuss the three
Principia of Seeding, noting that adherence to
them has also been revealed to be a matter of
ethics, of professionalism (Mihram, 1981) among
The relationship betuwsen
pseudo-random number generators and encryption
techniques will algso be explored (Mihram, 1982),

2. TERMINOLOGY

2.1 Qutline of the Paper

The present section will introduce and define a

CH1953-9/83/0000-0027 $01.004+® 1983 IEEE



28 G. Arthur Mihram

number of terms for the ensuing sections. The
very next section (3) will review the six-stage
Scientific Method (cf. Mihram, 1972: Figure 5.2),
introducing therein a more appropriate term (viz.,
Perscrutation) for that activity which some simu-
lationists have incorrectly (Fishman and Kiviat,
1968) termed “verification" and athers not suffi-
ciently definitively (mihram, 1976c) called “scru-
tinisation”, !

The second subsequent section (4) will review the
three Principia of Seeding in the context of the
final three stages of a simulation model's deva~
lopment: i.s., in the thres stages in which exper-
imentation with an already programmed simulation
is conducted: Perscrutation [III], Confirmation
[IV], and Inference [V].

The third subsequent section (5) will then review
the recent literature of three statistical taech-
niques in simulation methodology: (A) entithetic
variates; (B) blocking by means of seeds them-
selves; and, (C) regenerative processes, noting
that there is only very limited applicability of
any one of the techniques in simslation method-
ology.

The fourth subsequent section (6) will note, in
the context of the Principia of Seeding, that our
pseudo-random number generators not only are
noard-shufflers" (Mihtam, 197%) but also are
axemplers of encryptibn techniques (Mihram, 1982).

The paper then closes (Section 7) by noting the
moral (i.e., the ethical) issusgs raised by Admiral
Bobby Inman (1982) in the pracess for publishing
material dealing with encryption techniques. That
adherence to the Principia of Seeding is itself an
gthical issue (Mihram, 1982) is presented in the
context of the very motivation for conducting si-
mulation methodology in concerdance (mihram, 1983)
with the esteblished, six-stage Scientific Method:
viz., natiopal survival.

2.2 The Definitions

That computer progremming is algorithmic, and
therefare not mathematics, has been earlier esta-
blished (Mihram, 1977, e.g.) and then alluded to
(Manthey and fioret, 1983). Some scientists (e.g.,
parwin) express themselves in a natural languags,
using first-person grammar; others (e.g., Newton)
present their explanation of some phenomenon in
the lenguage of mathematics; using a third-person
grammar, A computer programming language, however,
is not mathematical; 'rather it is of second-
person grammar, is algorithmic,

The fact that soms mathematical proofs are cons-
tructive (e.g., Euclid's Algarithm) does not
renlly contradict the facts that scientists employ
mathematics as a third-person description of natus
re and that computer programming is of second-per-
son grammar. A mathematical proaof, if expressed
as an algorithm, is not scisnce; it is mersly art,

Science is that human activity devoted to the
search for the very explanaticn for some naturally
occurring phenomenon, * As such, a scisntist is one
who seeasptc provide the very sxplanation of (i.e.,
the truth abaut) some naturally occurring phenosie-
non, The scientist is required therefore to be an
artist, for he must construct a model in order to
provide his explanation (Mihram, 1977).

when the present author uses the term, “simula-
tion," he is referring to a completed (i.e., a
programmed) algorithmic model in a machine-read-
able format. A simulation is therefore a model,
not an exercising of that model.

To be more explicit, a computerised simulation is
the model within the memory of the computer,
whereas a simulating is an encounter (minhram,
1972) with the computerised simulation; i.e., 2
simulating is the exercising of the model to mime
once, over a single time period, the system bseing
modellaed.

1 believe that it was John Mcleod who introduced
the term, “"simuland": that real system being mo-
delled, This is a helpful term indsed, particu-
larly useful in discussing the Confirmetion stage
of a model's development, at which stage one re-
quires a two-sample statistical test: one sample
from the simulatings (encounters), a separate
sample of observations from the simuland.

There does exist an adjectival form of simulation:
viz., simular: of, or having to deo with, the simu-
lation——as opposed to having to do with the simu-
land. The simular response becomes then the vec-
tor-valued, time-oriented, realisation of a si-
mulating:

R(E) = [R(t), Rplt), «ees Ry(E)L,

t = O.',l,z’o.o,T, El:]
wherein T represents the simular duration and J
the number of time~dependent attributes for which

the simulation model's executive routine is capa-
ble of mainteining @ trace, or record.

It follows that the term, "simular experimenta-
tion," is defined as a meaningfully structured
set of n simulatings with a simulation.

One should note that the present papsr does not
preclude the applicetion of any of the statisti-
cal technigues to be discussed to a computerised,
stochastic, and yet truly mathematical model,
such as one written as the "input data" for a
£SMP or a DYNAMD processor (See Mihram, 1376c,
e.0.). Indeed, the Principia of Seeding apply
equally well to encounters with (experimentation
with) these computerised mathematical models.

3. THE SCIENTIFIC METHOD

In either event, simular experimentation is con-
ducted for one of two purposes: (A) to establish
a model's credibility; or (B) to make inferences
regarding a simuland, The first matter has led
(mihram, Innis, et al,, 1974) to the understand=
ing of the six~stage Scientific iMethod:

0. EXTANT KNOWLEDGE=-~the 'Null Stage' of a mo-
del's development, representing the total cumu-
lation of all the content of all of Nankind's
museums and libraries in existence;

I. SYSTEMIC ANALYSIS—the first stage of a sci-
entist's model's development, representing both
his confrontation with a yet-to-be explained na-
turally occurring phenomenon and his mental re-
flexiohs on those observations, (i.e., Stage I
is 'gQbservations + Reflexions's, leading to:

I1. POSTULATED HYPOTHESIS—the second stage of a
scientist's model's development, representing
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the artwork (sculpturing, writing, programming)
necessary to provide the explanation derived by
" the scientist as a result of his reflexions on
his observations (Stage I, above), This Stage be-
- gins with a decision as to which modelling format
(e.9., algorithms) the scientist is to employ and
concludes with the completion of that artwork
(e.9., his simulation programme);

III. MODEL PERSCRUTATION~~the third stage of a
scientist's model's development, the first of the
two stages dealing with the credibility of the ex=
plenation provided at the end of Stage II (above),
and deals with the logical and grammatical recti-
tude (precision) of the model itself. Any error
6uch as a logical or typographical error in a se-
quence of mathematical equations submitted by a
scientist to an editor) is corrected by the sci-
entist’s returning to Stage II [535 Figurs l.],
there to alter the model (artwork) appropriately
and to then subject the corrected model itself to
further perscrutation (Stage II1) before proceed-
ing to:

IV, CONFIRMATION—the fourth stage of a madel's

development, the second of the pair of stages deal-
ing with the credibility of the explanation (model)
provided at the end of Stage II. This stage deals
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with the compatibility of any impeccably logical
deduction (derived from accepting the thoroughly
perscrutated model as correct) with the real world.
Any error so discovered is likely the result of an
error in Stage I (Systemic Analysis), to which the
scientist must return._.so as to reformulate his ex-
planation (Stage II: Postulated Hypothesis), then
subject it to its own Perscrutation (III) before
returning to this Confirmation (IV) stage for fur-
ther credibility testing; if perchance an incompa~
tibility is discovered in this Confirmation Stage,
yet is actually the result of a previously unde~
tected logical or grammatical error (such as an un-
discovered 'bug' in the simulation model), then the
correction is made by a direct return to Stage 11,
rather than a return to Stage I [Figure 1 makes
clear these alternative cybernetic paths (Mihram,
1975) for correction.], before returning again to
Stages 1II and 1IV;

V. INFERENCE~—~the final stage of a scientific mo-
del's development, concerned solely with making
impeccably logically derived deductions from the
thoroughly scrutinised and confirmed model., In ef-
fect, a new model (book, computer tape, e.g.) has
been placed on the library shelves, theraby aug-
menting Human Knowlsdge (Stage 0), and permitting
further humen progress. (e.g., Mihram, 1976c; Mih~
ram, 1983; and their many referents.)

EXTANT
KNOWLEDGE

SYSTEMIC ANALYSIS
1. Observation
2. Retlexion

U

POSTULATED
HYPOTHESIS
(Artwork)

I

PERSCRUTATION

!

CONFIRMATION

I

INFERENCE

H1

v

(Knowledge Augmentation)

FPigure 1: The Scientific Method
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The presant discussion (outline) of the Scienti-
fic Method is terse in presentation, buk has been
discussed at length in the literature of our simu-
lation methodology (e.g., Mihram, 1976¢; and its
referents) as well as that of our companion disci-
plines(e.q., Mihram, 1983; its referents; and Mih-
ram and Mihram, 1982, particularly its Table II).
For the present, however, one should riote that the
six-stage modsl-building process (the Scientific
Method: Figure 1) is itself confirmed (&.g., Mih-
ram and Mihram, 1982, particularly its own Figure
1 depicting how Popper’s Three Worlds are unified
as one) by an examination of Nature's own two ear~
lier model-building methadologies (genetic, theri
neural) for ersuring gurvival, The Scientific Me-
thod becomes therefore the model-building process
by which national surgival is ensured,

4., THE THREE PRINCIPIA OF SEEDING

Qur goal in simulation methodology is therefore
the desire to see that simulation models are cons-
tructed in accordance with the Scientific method,.
Whenever we opt to construct a stochaestic simula-
tion of a system, however, we must adhere also to
the principles which will assure that the resuli-
ing simular experimentation is conducted in accar-
dance with the conditions set by the techniques of
statistical methodology. In particular, experi-
mentation with a stochastic simulation implies
that we meet the statistician’s requirements for:

Randomness ‘

Stetistical independence

Experimental error and/or

The distinction between 'blocks' and 'variance
components',

4.1 Fundamental Prifcipium of Seeding

As introduced in Equation [1], the simular respon-
se, emanating from a simulating, is a time-ordered,
multivariate (vector) record of the J attributes
being meintained by the particuler simulation pro-
gramming languags's (SPL's) executive routine. for
the stochastic simulation, any one of these simu-
lar responses is a transformation of the total set
of the mocels irput conditions, though this transfor-
mation would seldom be capable of expression in
terms of 2 methematical formulas

Rj(t) - Rj(S; %,T), . [2]
for any LA 0’1,29000’1',
for any j = 1,2,.eesJ,

where (as in Eq. [1]) T is the simular duration
specified by the analyst and J is the total number
of stiributes being maintained by the SPL's execu=
tive routine (in accordance with the model's au-
thor's instructions), yet where

; - (Xl’xz,o.o,Xp)

is ths set of p snvironmental specifications re-
quired by the camputerised simulation, and where,

S = (S1, 52, sees ‘SK) [3]

is the set of K seeds required to initiate the mo-
del's stochastic behaviair in any simulating.

Quite generally, thsn, ons could compute/determines
¥(r) = fR(t), t = 0,1,2,...,T] (4]
Y(85 %,T)

(11

as the simular response, hereinafter taken for

the expediency of discussion to be univariate,

where f is any function which the analyst might
meaningfully specify.

The vector, g, of seeds can contain any number of
any of the five phyla of seed types (Mihram,
1979b), but in any event the vector [3] can be
juxtaposed, as on a single input data card or
field, to become:

U = (511521 vee Sg)s [s]

which, if viewed with a decimal, or bit, point
placed afront, becomes a variable restricted to
the range, (0,1), of the unit interval,

The simular response [4] therefors becomes
Y(T) = YU x,T), [e]

with the (p+l)~vector (X,T) constituting the non-
stochastic vector of input conditions required by
the computerised simulation,

In this form [6], the simular response becomes a
statistician's transformation of a uniformly dis-
tributed random variable, U. Indeed, for any
fixed (p+l)=-vector,

(;’T) - (;*oT*)’

one could conceptually initiate a barely finite
sequence of m encounters with the computerised
stachaestic model, one simuslating (encounter) for
each successive seed value: 1,2,...,m, where m
is the largest value assigneble to the (juxtapo-
sad) seedK 5); ectually,

moe T om (7]

where my is the number of values assignable to the
kth of the model's K seeds.

As the transformation, even via the implicit func-
tion defined by the algorithmic simulation itsself,
of a uniformly distributed random variable, the
simular response [4] becomes itself a random var-
iable, one having its own probability distribution
function, a p.d.f. which gonceptually could be for-
med from the histogram of all m simular responses:

Y(i5 %%, T), V(23 X%, T*), .oup Y(m5 X%, T),
in which case the model's environmental conditions
(¥X*,T*) would merely become parameters for the pdf:

ay(ys x%,T#). (8]

One of the fundamental requirsments of the statis-
tician is that one draw a random sample from the
p.d.f. [8] at hand, The realisation (Mihram, 1972)
of this requirement led to the (Fundamental) Prine
cipium of Seeding:

The juxtaposed seed, U, for a stochastic,
computerised, simulation model must be randomly
and non-repetitively selected from among the sset
of m admissible seed values.

Adherence to this principle ensures not only the

randomness required by the statistician but alsoc

the statistical independence required by most of

the statistical tests employed by the simulation:
ist during his perscrutation tests (Stage III,

above). In the scrutinisation of a dynamic, sto-
chastic, simulation model, we simulationists for-

mulate an hypothesis, one which would have to be
trug of the stochastic simular respohses for some
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particular input set {¥%*,T%) IF INDEED ths model
had besn programmed correctly., For example, we
might expect that the mean value of gy (See Eq.
[Ba) would be a known value, that g be a par-
ticular density function, or that the time se-
ries be of a particular type (e.g., a normal pro-
cess), in which case we would express the null
hypothesis and proceed with the corresponding
gge—sa?ple perscrutation test (Mihram, 1979c: Ta-
8 II).

A statisticien would view the simular response
(Eqns. [4] and [6]) through the following nota-
tion:

Y(T) = o(ET) 4 e(S3 %), [e]
wherein r(x,T) = E[Y(T)]

Es the mean (expected) value of the simular pdf
8 | and

E[e(g; ;9T)] = 0,

with e representing the simular experimental
8rTOoT.

Similarly, in the subsequent stage (IV: Confirm-

ation) of a stochastic model's development, one

requires a random sample of n,simular responses
- in order to compare this sample with a random
sample of np observations from a real-world sys-
tem peing modelled by some particular specifica=-
tion (x*,T#). A listing of these tuo-sample sta-
tistical tests for Model Confirmation has appear-
ed in the literature (Mihram, 1979c: Table 11I).

4.2 The General Principium of Seeding

In the ultimate stage (V: Inference) of a stachas-
tic simulation model's develapment, the already
thoroughly scrutinised and arduously confirmed mo-
del will still require statistical tachniques for
analysis, Adherence to the Fundamental Princi-
pium of Seeding still mests in this final stags of
the model's development the statistician's re-
quirements for randomness, for statistical inde~
pendence, and for experimental error., But, the
mesting of this last reqguirement is even more im-
portant in the simular experimentation conducted
with the programmed, scrutinised, and confirmed
modsl,

The analyst at this point seeks to compare (sta-
tistically) the simular responses smanating from
Ewﬁ differing environmental conditions (See Eg.
16 ]): '

Yi(T) = Y(U; x1%,T ) and

Yo(T) = Y(Us %%,T ).

Agein,statisticel hypotheses would be tested: e.g.,
the eguivalence of the corresponding cumulative
distribution functions (See Eq. [8]):

GYl(yl; ;1*,T ) and
Gy, (y23 Xp*T )3

or, the hypothesis that their two mean values are
equivalent, thersby testing whether one systemic
configuration (x3*) is or would be better (larger)
than the other (Xo*).

fiors generally, one can apply the statistician's
experimental designs by adhering to the Fundament-
al Principium of Seeding (See Mihram, 1979c:
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Table IV): multiple rankings, enalysis of vari-
ance, response surface methodology, time series
analysis). However, a clear misunderstanding of
the requirement for the Principis of Seeding has
appsared (Schruben and Margelin, 1978) in the
literature of statistical methodology. That mis-
understanding has beén: corrected (Mihram, 1979d
and its referents), though some statisticians
(and simulationists) may still believe that they
can conduct experiments with the seeds of large-
scale stochastic simulations, perhaps due to the
limited distribution of Mihram (1976b).

The General Principium of Seeding (e.g., Mihram,
1976b) states that:

Some non-empty subset of the K seeds required .
by a dynamic, stachastic, and computerised si-
mulation must be randomly and non-repetitively
selected from among their collective set of
admissible values,

Whenever a subsef of a model’s p environmental
specifications, x, remains fixed in defining a set
of n model encounters, a block of simular respon-
ses has been defined. _Whenever a (proper) subset
of a model's K seeds, S, remains fixed in defining
a set of n model encounters, a random block of si-
mylar responses has besn defined.

It is quite possible to hold constant all p of a
model's environmental specifications, ?T—ihruugh-
out the definition of n model encounters, so that
the adherence to the Fundamental Principium of
Seeding would merely assure that a random sample

of responses would result--as discussed in the
materiel above leading to Equation {8]., Further~
more, even if each of the p-vectors, X, is varied
from encounter to encounter among the n simulatings,
adherence to the Fundamental Principium of Seeding
assures that experimental error (See Eq. [9]) will
be present in the data used in any ensuing statis-
tical analysis. The methodology of statistical ex-
perimental designs is directly applicable in simu-
lation msthodology for simulationists who adhere to
the Fundamental Principium of Seeding.

However, the entire K~vector of seeds cannot be
fixed throughout the defimition of the n simula-
tings in a simular experimentel design. To so fix
U = Ug would not permit any measure of experimental
error,

As a specific example, suppose that the only sto-
chesticity in a model of a grocery store is the se-
quence of a day's customer arrival times, and that
these random arrival times are provided as a tape
of actually recorded observations from a day in the
past, The simuletionist expects that there exists
a file of %these daily tapes, so that he may random-
ly select a tape from this file for each model's
encounter. If he should hold constant the model's
environmental conditions (¥*,T#) for a set of n
modsl encounters, he would find po veriation in

the n simular responses: unless from encounter to
encounter he alters randomly the seed value (i.s.,
he selects randomly a tape of the pre-recorded
random customer arrivel times).

Yet, a proper subset of a model's K seeds can be
held constant throughout a simular experimental
design, PROVIDED THAT the analyst is aware that he
has thereby defined and must account for a var-
iance component: what the statistician calls
Trandom blockifng" (Mihram, 1976b)., In the preced-
ing example, if some other aspect of the model
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were being handled stochastically (e.g., custo-
mer's time at the checkout counter), then to inie
tiate sach successive encounter with the model by
the same single day's record of customer arrival
times would define a (random) block of simular
responses; of course, in this instence, the ran-
domness of the customer's times at the check~out
counter would need tp bs spawned by adherence to
the (General) Principium of Seeding.

4.3 The Third Principium of Seeding

Thus, the Fundamental end the General Principia
of Seeding really form the same requirement; tha
General Principium, however, reveals to the sta=
tistician (and the simulationist) how some very
limited experimentation with random number sseds
can be conducted. This type of experimentation,
nonsthaless, is valid only in the context of the
statistical feature of "random blocks,* providing
a ‘variance component' rather than a 'block ef=
fect' in the subsequent statistical snalysis of
variance,

In the aforementionsd exapple of a stochastic si-
mulation of a grocery store, the repetitive use
of the very same pre-recorded sequence of &usto-
mer arrival time-in sach of the i encounters in

a simular experimental design means that ong is
actually meking inferences about the grocery sto-
re's performance on one particular day (on one
particular Monday, e.g9.), so that one is not able
to meke inferences regarding the general perform-
ance of the stare until one has removed the effect
of this variance component (the random block
effact),

However, the Third Principium of Seeding (Mihram,
1979a) was introduced in reaction to a noted de-
ficiency in our extant simulation programming lan-
guages, These languages (SPL's) typically employ
a multiplicetive (or a mixed) pseudo-number gene-
rator (See, ©,89., Mihram,-1972: p. 55), yet the
one (two) paremeter(s) of the generator is (are)
imbedded within the SPL itself and are not made
accassible for change by the analyst. Hence:

At the outset of a simular experiment of n
successive encounters with a stochastic simu=
lation model which employs one or more pseudo-
randam number gensrators, each generator's
parameters should be selected randomly (and
non-repetitively) from among its set of ad-
missible values,

Adherence to this Third Principiun of Seeding enw-
sures that the analyst will be using a "well-
shuffled deck™ of the number cards provided by
each pssudo-random number generator (Mibram, 1981)
used in the n simulatings, With respect to the
four requirements of statistical techniques, ad-
herence to this Third Principium of Seeding en-
sures randomness. There should be no reason to
favour any randomly shuffled deck of cards over
any other randomly shuffled deck.

Hence, the three Principia of Seeding are princi-
ples, the adherence to which provides the quali-
ties required for the application of statistical
techniques (including timeé series analyses) in

simulation methodology. They ensure the random-
ness and statistical independence of the simular
responses required in the one~sample statistical
tests used in Stage I1I (Perscrutation) of a mo-
del's development; they ensure the randomness,

statisticel indepsndence,and the experimental
error required in the two-sample statistical tests
used in Stage IV (Confirmation) of its develop-
ment, and, they ensure that not only these three
qualities but also those called "experimental
unitsy "blocking,” and "variance components" are
present as desired in tha experimantal desxgns.
employed with the alreedy perscrutated and assi-
duously confirmed model in Stage V (Inference).
One may examine Tables I, II, and III of Mihram
(1976b) for a delineation of the statistical tests
thershy epplicable in the thres respective stage
of a model's scientific development, !

5. THREE STATISTICAL TECHNIQUES

Adherence to the three Principia of Seeding makes
available thersfore an extensive 'catalog’ of sta-
tistical techniques for application in the exper-
imental stages (III, IV, V) of a model's develop~-
ment, Three other topics in the statistical li-
terature do seem to require some clarification,
particularly with respect to their presentation in
our literature of simulation methodology: (A)
antithetic variates; (B) blocking by means of
seseds themselves; and, (C) regenerative progesses.

5.1 Antithetic Variates

Two types of antithetic variates, the simple and
the generalised, wers suggested in straightforward
fonte Carlo estimates of integrals (Hammersley end
Handscomb, 1964), the purpose being ta save come
putational time by employing functionally related
‘seeds’, U and V, which would induce a negative
correlation between the intsgrands, h(U) and h(V),
in

o E J‘;h(x)dx,
when estimated by

-1 P
o* Z n iElh(Ui) and
(1]

P -] n
T = n i§lh(vi),

whersin Y3 = v(U;) is a function continucus

and of slope 1 over the unit interval
except at (et most) a finite number of points,
where the U;, i = 1,2,...,n are randomly and inde-
pendently selected uniformly distributed random
variables,

The case for V E v(U) = (1-U) prevides the simple
antithetic variates, whereas the functional forms
acceptable to v for the application of the genera-
lised antithetic variates have been discussed sar-
lier {e.g., Wihram, 1974) and there related direct-
ly to the mixed congruential techniques® trensfor-
mations themselves. Indeed, the inapplicability of
any of the faur variance-reducing technigues of
Monte Carlo analysis has been demonstrated, the
direct result of the fact that the simular response
function (Eq. [10]) is actually

r(x,T) = m" 1§0 Y(i3 %,T), or
[12]
- f; v(as ¥,T)da,

so that neither the integrand nor its mathematical
expression or properties are likely to be known.
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A more rscent paper (Ramsay and Wright, 1979) has
confirmed the result that it is foolhardy indeed
to apply antithetic variates blindly in simular
experimentation. Variance augmentation rather
than the desired reduction shall likely result,

5.2 Random Blocking and the Spliteplot

The statistical technique of random blocks (vari-
ance components) has been discussed above and its
applicability in simular experimentation present-
ed in the context of the principled saeding of
computerised stochastic simulations.

Another topic in the statistical literature is the
split~plot (experimental) design (Mihram, 1978).
The model, once computerised, becomes for the sta-
tistician the experimental unit; a treatment is
then applied by specifying the madel's p environ-
mental conditions, ¥. Randomisation of the treat=
ment to the experimentel upit occurs by the speci-
fication of the seed, U = S, to the computerised
model. Blocks of experimental units are defined
by holding constent g (< p) of the envirenmental
conditions caonstant throughout the n encounters

of a simular expesrimental design, whereas (as dis~
cussed ebove) random blocks (variance components)
arise whenever any proper subset of the computer-
ised model's K seeds remains fixed at the initia-
tion of each of the n encounters. The split-plot
design occurs in simulation methodology only when-
esver saome facet (sub~routine) of a model could be
replaced in toto by a more detailed sub-routine,
one miming some systemic property with much great-
er deteil; by defining the properties (say

X419 xp+2) of this more detailed simulation, one

would be introducing a split-plot effect.
5.3 Regenerative Processes

A third statistical technique deemed by many (e.g.,
Crene and Iglshart, 1975) to be appropriate to si-
mulation methodology is the application of regene-
rative processes, Unfortunately, as will be shoun
below (See alse Mihram, 1976a), the technique is
quite ineppropriate for large-scale stochastic si=-
mulation models because the technigue's requirement
for statistical independence can seldom (and could
hardly be expected to) be met.

The simular response is indsed a multiple time
series, or multivariate stochastic process,
[13]

LOT AR ECE ] S

as reflexion on Eqns. [1] end [2]] reveals, Indeed,
since any stochastic process is an ensemble of
time-dependent functions (of realisations), it fol-
lows that, for any fixed (p+l)-vector of environ-
mental conditions, a single realisation from a si-
mular stochastic process results from each differ-
ent specification of the (juxtaposed) seed, U = §

[see £q. [5].). -

Regenerative processas bgcome_useful whehever a
stochastic process, say { X(t) 3 bas realisations
which return from time to time to a previously held
(i.e., some specific) position or state, with the
assumptions that sach realisation (with probability
one) will return again and again to this state and
that these successively observed, state-to-state,
segments of the realisation are statistically inde-
pendent, then one would hope that he could obtain
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n realisations without needing to spscify n ran-
dom number seads in accordance with the Principia
of. Seedings yet:

[R(U; §;t), t'0,1,2,...,t1]
(RN ()5 %,8),  tmby, by 4d, 000,84, ]

1
’t [14]
(RO, (M5 %,t),

i Htotl, esy 19

t3]1

wherein t; represents the time (rendom) betwsen
the (i~l)st and the ith regeneration, and Nj is
the value (location) of the pseudo-random Ly me
ber generator at the time of the ith regeneration,

tut,

1*9s +

2
stc.,

One notes immediately that the succassive segments
of the realisetion (See Eq. [14]) are very, very
likely to be statisticelly dependent, for, after
all,the responses in each segment are transforma-
tions of the same random variable, U. Further-
more, since the typical simulation model's res~
ponse (See £q. {13]) is multivariate, one could
hardly expect that the values of the interesting
variate (say, R;) would be statistically indepen-
de;t of the concomitantly randomly varyimg Rj, 8ll
J i.

One need be VERY, VERY cautious indeed in apply~
ing the techniques eppropriate to regenerative
processes in statistical methodology.

6. PSEUDD-RANDDM NUMBERS AND ENCRYPTION

Since any of the multiplicative (or mixed) con-
gruential pseudo-number generators is itself a
"shuffler" of numbered cards, it should not bs

too surprising te learn that mathematicians had
already sighted them as ideal "shufflers' of, say,
the letters of an alphabet and therefore had seen
them as devices for encrypting symbols, All one
need do is assign to every symbol (i.e., to svery
key on a keyboard) a number40,1,2,3,.e.,m§, then
secretly shuffle these numbers so as to transmit
the code (symbol) now in shuffled position j in=
stead of the symbol representing j. (Alternati-
vely, one could transmit for the symbol which had
been assigned value j the symbol assigned to the
value resulting immediately from the {mixed) pseu~
do-random number generator when seeded by j:

There exist both an ordinal and a cardinal tech-
nique for encrypting symbols.).

More details of this procedure have been delineat~-
ed earlisr (Mihram, 1982), with refsrsnce to the
"orime factor" technique for encryption (Richards,
1982a) as well. Indeed, the prime factor techni-
que provides another method for shuffling a deck
of numbered cards (Mihram, 1983b), so that theore~
ticelly-minded (i.e., number-theoretic) simula-
tionists now have an opportunity to compare other
"card-shuffling” techniques for their application
in simulation methodology.

7. CONCLUSIONS

The fact that our pseudo-random number generatars
can serve as encryption techniques has raised a
second ethical issue (For the first, see Mihram,
1982; for the second, see Inman, 1982,) in their
use. One's value~ranking (e.g., nation vis-a-vis
family, nation vis-a-vis religious friends) is a
matter of his integrity, though it has been shouwn
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that certain value-rankings are more valueble to
national survival than others (e.g., Mihram,
1983a; Mihram, 1982). Indeed, it may have been
brought to the attention of Richards (1982b) that .
there are many other American academics who did .
not like the epparent (though perhaps unintended) .
slap-in-the-face which his paper (Richards, 1982a) .
had given to Admiral Inman's reguest (Inman, 1982)
thet papers dealing with encryption be fixst sub-
mitted for review to, say, the National Security
Agency .

The other ethical matter raised by our pseudo-
random numbers is directly the motivation for the
Principia of Seedings viz., to ensure that raridom-
ness was, without any possibility of bisds, instil-
led into the n encounters constituting a simular
experimental design., Simply put, if our machine-
readeble stochastic simuletions are to merit shel-
ving in our national archives, then their truth(s)
will only be enhanced by our adopting & profes-
sional attitude (Mihram, 1982) toward their
honestly-conducted seeding,

We would do well as professionals to ignore the
contemporary "concerns" regarding academic freed-
om (e.0., Kolata, 1982) and be prepared to note ,
that one's academic freetom (i.e., his freedom-
to condgct and report his research without topi-
cal canstraint [See TECHNOMETRICS 193 225-1,
1977, ) is not constrained beceuse certain to-
pics of the day are to be reviewsd first by a le~-
gislated national agency (CIA, FBI, NSA, e.g,)
before being despatched for publicatian, Surely,
return receipts for registered/certified mail
carrying menuscripts to such agengies can be used
to establish one's priority of publication or to
reveal to academic administrativa sliperiors whe-
ther an excessive dslay is being encountersd by a
yaung, probetionary academic who has patriotically
submitted a manuscript to a national security

agancy. In this regard, the 1822 precedent could
be noted: the suppression of publication of a

Frenchman's manuscript for reasons of national se-
curity (Smith, 1982),

A look at the OXFORD ENGLISH DICTIONARY might also
prove useful to us professional simulationists
concerned about national survivel/security. For
the sntry, "liberty," one uwould infer the formule:

LIBERTY = FREEDOM + RESPONSIBILITY,

lsaving one to ask whether certain chosen people
who call for 'academic fisedom’do so.soloudly as to
meke rather inaudible the more proper call: the
call for 'academic liberty'., Perhaps, given the
establishaed survival value of adherence to the
sclentific fiethod (Mihram, 1975b), we should

avold usage. of the term, “"scientific freedom,"

and employ instead "scientific liberty," implying
thereby our concern for our national responsibili-
ty.

The U.S. Supreme Court ruled on 29 June 1981, by a
vote of 7 to 2, that one's highest priority must
be the nation, The second verse of Katherine Lee
Bates's."America the Beautiful” underscores clear-
1y [WASHINGTON POST, 28,1,1981: p, E~12] the
court's fundamental point (Burger, 1981) in de-
ciding the Agse caper:

"It is 'obvious and unarguable’ that no govern~
ment interest is more comnpslling than the
security of the pation,”

Mihram
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