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MULTIVARIATE ESTIMATION IN SIMULATION

Andrew F. Seila
Department of Quantitative Business Analysis
College of Business Administration
University of Georgia
Athens, Georgia 30602

Methods for multivariate estimation in regenerative and nonregenerative discrete
event simulation are discussed, along with practical considerations in anplying

these methods.

1. INTRODUCTION

Frequently, the type of information that systems
analysts wish to Tearn about a system under study
cannot be summarized in a single performance mea-
sure. Instead, the analysis must involve simul-
taneous comnutation or estimation of several para-
meters. When simulation is involved in the analy-
sis, one is therefore confronted with the nroblem
of jointly estimating the values of several per-
formance measures.

Consider, for example, a queueing system which is
being simulated in order to estimate the station-.
ary mean waiting time per customer and the server
utilization. To test whether both of these per-
formance measures are in an acceptable range of
values using data from a single simulation run,
they must be estimated jointly. Considering the
estimates separately would be erroneous and mis-
leading.

As a second example, consider the same aueueing
system and the same two performance measures, but
now suppose the system is being operated under two
different service nolicies. We wish to determine
if the two policies induce a significant differ-
ence in the system performance. Again, a test for
each parameter separately would not be sufficient.
‘Instead, we must test for a difference in the
parameters jointly.

Finally, consider a service system in which there
are five classes of customers. Suppose that we
wish to estimate the mean waiting time for each
class of customer. We may wish to do this by com-
puting confidence intervals for each class' mean
waiting time such that all five confidence inter-
‘vals include their respective true parameter
values simultaneously with probability .95. As in
the first two examples, this is a problem in mul-
tivariate estimation which cannot be solved using

a univariate approach,
In this paper, we discuss methods for jointly
%ﬁmﬁmaﬁumr£=hvrr.“,%)ﬁs

stafionary performanée medsures dsing data from
a discrete event simulation. The methods are

-apnlicable to any performance measure which is

the stationary mean of a sequence of observations,
in discrete or -continuous time, and to any system
which has a stationary, or steady-state, distribu-
tion. Informally,.a stationary system is one in
which the statistical properties show a pattern of
Tong-term stability. In Section 2, we will dis-
cuss methodology applicable to regenerative sys-
tems; in Section 3, methods aporopriate for sta-
tionary, nonregenerative systems will be pre-
sented. Finally, the Tast section discusses some
practical problems with multivariate estimation in
simuTation.

2. MULTIVARIATE ESTIMATION IN REGENERATIVE SIMU-
LATION

A régénerative simulation has the property that
there is a random sequence of regeneration times
such that, at each of these times, the future be-
havior of the system becomes statistically inde-
pendent of the past, and probabilistically identi-
cal to the behavior after any other regeneration
time. The most familiar example of a regenerative
system is that of certain queueing systems in
which the system "starts anew" each time a custom-
er arrives to find all servers idle and all queues
empty. The term “starts anew" means that future
behavior is independent of the past and identical
to the probabilistic behavior after any other
empty and idle period,

A cycle is defined to consist of all observations
between two consecutive regeneration times. The
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jmportant characteristic of regenerative simula-
tions isithat the cycles are statistically inde-
pendent and jdentical replicas of one another, and
all information about the values of stationary
performance measures is contained in the proper-
ties of each cycle. As a result, the cyc]e,
rather than the individual observat1on, is the
fundamental unit of data in a regenerative simu-
lation.

In our presentation, we will omit some technical
details and concentrate on the general concepts
and required computations. For a justification
and more thorough discussion, see the papers by
Seila (1982 and 1983).

Let the observations on s performance measures be
represented by {(Xi]’ Ni1)’ (ij, Ni2)’ cees
(st N ), i=1,2, ..., n}, where Xij is the
sum and N is the number of observations on para-

meter j dur1ng cycle i. For simplicity of expo-
sition, we will assume all observations are dis-
crete-—t1me, howeVer, if this is not the case, the
X;s*s and Ns s can be replaced by appropriate

1;%egra13. It is well known that ry = E(X, J)
E(Ni')’ where r, is the value of parameter i, and
E(Xijl and E(Ni') are the means of Xij and Nij’
respectively. The estimator for each rs is

=‘x"./N‘., = 1s 2y vy S,

"3

tor r'= (r R rz, .

where X j and Nu The vec-

2] 15
s r ) of these estimators is
the mu1t1var1ate estlmator for r = (r

re ).

In order to compute confidence intervals or test
hypotheses, the sampling d]str1but1on of ¢ must be
known. When the sample size, n, is Jarge, 7 has
approximately a multivariate normal distribution
with mean r. For each cycle, define

1: r2’ cees

Zij‘= Xij - erij’ i=1,2, ..., 1
J=T1,2, ..., s,
.and let o, g = E(Zijzik) for j, k=1,2, ..., s.
Since E(Z ) are the ele-

=0, the values of U]k
ments of the covariance matrix for the vector Z
(z P 212, .. Z ) The covariance matrix for

is V/n, where V 1s an s X s matrix whose (j.k)th
e]ement is o, k/(E(N . )E (N‘k))’ The values o, jx can

be est1mated using
cP— Z Xs X,
Jjk i1 iitik ~

"~ n ~ A
" jZ]XijNik oy ik . X N1J 15}

]-s> 1]

2 X1k ii

Define the statistic

2
= . - Mo N - ,
= 321 k21 "Ml - md
where W, " is the (j,k)th element of the inverse of
the matrix [o. k] Accord1ng to the multivariate

norma’l theory, {((n- s+1)/ns)T (r) has approximately
an F-distribution with s and n-s+1 degrees of
freedom in the numerator and denominator, respec-
tively. In particular, an approximate 100{1~a)-
percent confidence interval for r is given by all
vectors x for which

T2(x) < (ns/(n=s+1))F o (et

where F is the 100(1-a)-percentage point of

3Va sV
@2 ¥1Y2
the F-distribution with vy and,v2 degrees of free-
dom.
One can also compute simultaneous confidence inter-
vals for linear compounds of r. Suppose that T
Tos -+v5 T, are f vectors, and p, = mir for j = 1,
2, ..., %, are & linear compounds of r. If we de-
fine d2 =l Vn /n, where V is a matrix whose
(3,k)th element is U'H«Nij)’ then the confidence
i Po- ., wir + hl], § o= s ees 8,
intervals [E%E hJ, i h3]° j 1;22 2
= d5 [(ns/(n-s+1)F s.n- _e+q] /T will have

a s1mu1taneous confidence coeff1c1ent exceed1ng
100(7-a)-percent. In particular, if L is a vec-

tor having a 1 in the jth component and zeros else-

where, then g&i,=

where h

rj and
® =y = H

U
5

Thus, a set of 100(1-a)-percent simultaneéus con-
fidence intervals for Tys Pos evvs T is

a~ : 1
Cas
| JJ ns :
'rJ 1// N2 (:n s+] Fa;s,n—s&1) s
1
_33
\/ (n s+1 a,s,n—s+1) ’
S.

for j = 1 25 vuns

Note that ojj/NQn is ‘the estimate of the variance
of ?J if rJ were being estimated by jtself. An-
other approach to computing simultaneous confi-
dence intervals uses Bonferroni intervals (Law and
Kelton, 1982, p. 308).
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3. MULTIVARIATE ESTIMATION IN STATIONARY NONRE-
GENERATIVE SIMULATIONS

The structure of regenerative simulations allows
the confidence intervals presented in Section 2
to be valid in large samples. One would natural-
ly ask if similar large sample confidence inter-
vals could be computed for systems that are sta-
tionary but not necessar11y regenerative. It
turns out that the answer is "yes.!

‘In nonregenerative systems, collection of obser-
vations for computing estimates must be begun
only after significant initialization bias has
been removed. If the response is mu1t1var1ate,
this is a more difficult problem than with uni-
variate output. Schruben (1981) presents one
method for determining an abpropriate truncation
point for beginning data collection when the out-
put is multivariate.

For the purpose of data analysis, we will group
thersimulation outnut into n'batches. A batch
coyjd:. be defined by elapsed simulation time, or
by{ﬁhe number of observations. To 111ustrate,
corsider the examnle discussed in Section 1
where we want to jointly estimate server utiliza-
tion and mean waiting time per customer in a
queueing system. Let U (t) denote the observed

portion of servers that are busy at time t during
batch i, and W denote the kth observed waijtina
time during ba%&h If a batch consists of ob-
servations recorded during 100 hours of operation,
say, then the ith b tch mean for server utiliza-
tion would be U U1(t)dt/100 where the inte-

gral is taken over the duration of batch i. How-
ever, the number of customers to complete service
during the ith batch would be a random variable,
Ni' Then, the ith batch mean for customer wait-

ing time would be FH = zwki/Ni’ where the sum is

taken. over all waiting times in batch i. This is
a ratio estimator, since the denominator is a
random variable. Similarly, if we define a batch
in terms of the number of waiting times observed,
w1 would be an ordinary sample mean, since-Ni

would be fixed; however, U} would be a ratio

estimator because the elapsed time for the ith
batch would now be a random variable. Therefore,
generally, at least some of the batch means would
be ratio estimators.

Let the number of observations on parameter j in
batch i be denoted by K 'E and Tet Y denote the

sum of observations on Darameter 3 1n batch i.
If parameter j is observed in continuous time,
then Ki

to parameter j, and Yi' would be the integral

over batch i of the "level" of parameter j. De-
fine the ith batch ratio to be

and let 35 = (Y, i1 2, . Yis)‘ If the

batches are suff1c1ent1y large, and some techni-
cal conditions are met, then the batch ratios,
for distinct batches, are approximately uncorre-

3 would be the length of batch i relative

lated. Thus, the simulation run can be represent-
ed by a seguence of (approx1mate1y) uncorrelated
random vectors (Y1, Yoo oot In . Standard multi-

variate estimation techniques can then be app11ed
to this sample for the purpose of statistical in-
ference.

The estimator for r = (ry, ry, ..., rg) is ¥ =
(V],Vz, cees 75), where

_=l§

Vs n-_113'

Let S be the estimated covariance matrix for Xﬁ’
whose (j,k)th component is given by

has approximately an F-distribution with s and n-s
degrees of freedom if the number of batches, n, is
large, Thus, a 100(1-a)-percent confidence region
for r is given by all vectors x for which

*Z(X) < Sﬂ?él) ®3S,n-5 °

Methods for computing simultaneous confidence in-
tervals can be found in standard textbooks on
multivariate statistics, such as (Morrison 1967).

4. DISCUSSION

In this paner, we have presented methods for multi-
variate statistical inference in regenerative and
nonregenerative simulations. These methods are
valid only for sufficiently large samnles. How-
ever, in practice, all samples are finite in size.
One would therefore question how effective these
procedures are.

Experimentation has shown that the validity of con-
fidence intervals computed using the methodology in
this paper depends on the sample size and the model
which is generating the observations. Sample

sizes required for multivariate confidence regions
are generally much greater than those for uni-
variate confidence intervals. Thus, the analyst
would be well advised to use conservatively large
sample sizes,

A second nroblem that apnears in practice is one of
bias. The estimators for both regenerative and
nonregenerative simulations are ratios of corre-
lated random variables, which are known to be
biased estimators for finite samples. This bias
could be reduced by aoplying the jackknife (Law and
Kelton 71982, p. 312); however, this technique
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unfortunately increases the variance of the esti-
mator. Fishman (1978) has proposed an estimator
for regenerative simulations which has

O(n']) bias removed and has the same variance as

the unadjusted estimator, to O(n'z). Bias re-
duction in nonregenerative simulations remains an
open research problem.
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