Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

613

MARKOV MODELLING

W.K. Grassmann
Department of Computational Science
University of Saskatchewan
Saskatoon, Saskatchewan
Canada

Markov modelling deals with discrete event systems in which events happen com-

pletely at random.

The resulting Markovian systems can often be analyzed analytically.

In this

session, we show how to use the available packages, and what methods can be em-

ployed to find transient and steady state results.

It turns out that Markov

modelling is extremely convenient to analyze systems with very few state vari-

ables.

I. DEFINITION OF MARKOV MODELLING

To define Markov modetling, it is best to
first consider discrete event simulation. In dis-
crete event simulation, one has

1. states (e.g., lengths of different !ines);

2. events (e.g., arrivals, change of line);

3. a schedule (time at which events occur
including the time when simulation ends);

4. an initial state;

5. output statistics (e.g. number in sys-
tem at +ime T, length of a queue aver-
aged from 0 to T).

Markov modelling deals with discrete event
systems as described above, except that events
happen completely at random, at a rate which de-
pends on the state. No schedule is necessary,
which simplifies the system considerably. More-
over, in this session, we consider only analytical
solutions to find the expectations of output
statistics.,

1. AN EXAMPLE

The foliowing example is introduced to clarify
the above terms. Suppose there are two parallel
lines, and arrivals always join the shorter fine.
If both lines are of the same length, they join
line 1. The customers stay in line until they
are served by their respective server. The arrival
rate is 1, and each server works at a service rate
of 1.5, Arrivals are Poisson, and service times
are exponential. At time zero, the system is emp-
ty. We want fo find the expected number in the
system at +ime 0.5 as well as expectation of the

number in the system, averaged over the interval
from 0 to 0.5. In this case, one has the follow-
ing:

1. The state consists of 2 state variables,
X1 and X2, which represent the length of
line 1, respectively, line 2. Both Xt
and X2 are non-negative integers. Hence
X1, X220

2. The gvents and their rates are given by
the following table:

Table 1: Event Table for Parallel-Queues

Event Name | Effect Rate Condition
Arrival 1 [X1 + 1, X2 1 X1 < X2
Arrival 2 | Xt, X2+ 1 1 X1 > X2
Departure 1| X1 ~1, X2 1.5

Departure 2| X1, X2 - 1 1.5

This table should be essentially self-
explanatory. 1t indicates that the event
called "Arrival 1", which is an arrival in
line 1, increases X1 by 1, leaving X2 un-)
changed. The event occurs at a rate of 1,
and it can only take place if X1 £ X2, The
other events can be interpreted in a simi-
lar way. 1In addition to The conditions
stated, each event must satisfy the follow-
ing:

The state after the event takes place (the
target state) must be in the prescribed
state space. Foi.instance, departure 1

CH1953-9/83/0000-0613 $01.00 © 1983 IEEE

614 W.K. Grassman

requires X1 2 0 because X1 would be nega-
tive otherwise. This condition is implied,
however, and is not stated in Table 1.

3. The initial state is:
X1 =0, X2=0
4. The output statistics are:

(a) the number in the system at fime

T =0.5o0r
X1€0.5) + X2(0.5)

(b) The number in the system, averaged
from 0 te 1, or

0.5
o3 XD +xah dt
0

Our aim is to calculate the expectations
of these oufput statistics by ahalytical
methods.

I1l. GENERAL FORMULATIONS

In general one has:

1. A set of states S. For our purposes, we
assume that each state X € S is a d-tupel

{X1, X2, ..., Xd}.
2. u events, numbered from 1 to u, their
effects fe(X)’ e=1,2, ..., u, their
(X), and a set Ce of states at

which the events are allowed to occur.
This information is given in Table 2.

rates xe

Table 2: Event Table for General
Markovian System

Event # Effect Rate Conditions
f1(X) x1(X) o]
2 fz(X) XZ(X) C2
u f (X} A OO C
u u u

We note that the rates may vary with the
states. We should also mention that in-
finite rates are allowed, even though
they will not be discussed here in any

detail.

3. An initial condition X(0). This initial
condition may be random.

4., A set of oufput statistics. In géneral,

output statistics are based on descrip-
tors, where a descriptor is a function of
the state. The number in the system,

in our example, for instance, Is given by
the descriptor function h(X) = X1 + X2. {If
H(t) is the value of such a descriptorat
time +, we considet the following output

statistics:

(1) H(ty, 02+ =T

(it) H(M == [H(H dt.
To

Mexima and minima of descriptors can
also be handled, although they require
additional state variables. As mention-
ed, only the expectations of output
statistics will be calculated. We also
note that probabilities are expectations
of output statistics. Their descriptor
are their indicator functions.

IV. PROGRAMS AND INPUT SPECIFICATIONS

The following software packages to do Markov
modelling are avallable:

1. The RQA - analyzer of Wallace and Rosen-
berg [16];

2. The QUE - package [51;
3. The EVA - package;

4. Many ad-hoc programs to solve specific
problems. We should mention here in
particular the efforts of Gross and
Miller i(l, Melamed and Yadin [13],
Hillier and Boling [12], Odoni _and Roth
[14], Goldberg [2], De Santis [1], and
others.

In this session, we only discuss the QUE-
package and the EVA-package. The QUE-package is
interactive, and Table 3 gives a typical dialog.
In fact, it shows how to describe the event
"Arrival 1" of Table 1. The user answers are al-
ways underl ined.

Table 3: Typical Dialog to Define an Event in the

QUE-Package

EVENT #1: ARRIVAL 1
THIS EVENT INCREASES
STATE VARIABLE1 BY ? 1
STATE VARIABLEZ BY 7 O
ARE THERE ANY OTHER RESTRICTIONS TO THIS
EVENT? YES
MINIMUM(T) MAXIMUM(2) OR LINEAR(3) RESTRICTIONS? 3
GIVE COEFFICIENTS OF LINEAR RESTRICTION
STATE VAR 1 * 1.
STATE VAR 2 % =1
LESS THAN OR EQUAL O
IS THE RATE CONSTANT(1)
"OR INFINITE(3)? 1
THE RATE EQUALS? 1

» VARIABLE(2Z)

This table should essentially be self-explanatory.
in general, the program 1s written such that model-
ling can be done with a minimum effort. On the
other hand, it slightly restricts the shape of the

event functions f (X) and the rate functions

x Xy

Markov Modelling 615

The second package, EVA, does not have these
restrictions. In EVA, the user has to provide a
FORTRAN subroutine, called EVENTS, which has to
provide al! the information about the events and

their rates. For the example of Table 1, this sub~
routine is given in Table 4. The program should
be essentially self-explanatory. For each event,
the target state XTAR(1), XTAR(2) is calculated,
given the state X(1), X(2). Once a target state
is found, the subroutine INSERT is called to re-
cord the state in an appropriate way. At the
same time, a check is performed to see whether or
not the target state is in the state space. 1f
it Is outside, the event is not applied to this
particular state.

Table 4: Example of EVENTS - Routine of EVA

SUBROUTINE EVENTS (X)
INTEGER X(2), XTAR(2)

LAMDA = 1
MU = 1.5
c
C ARRIVAL 1
c
IF (X(1) . GT. X(2)) GO TO 20
XTAR(1) = X(1) + 1
XTAR(2) = X(2)
CALL INSERT (XTAR, LAMDA)
60 TO 30
10
c
C ARRIVAL 2
c
20 XTAR(1) = X(1)
XTAR(2) = X(2) + 1
CALL INSERT (XTAR, LAMDA)
c
C DEPARTURE 1
30 XTAR(1) = X(1) -1

XTAR(2) = X(2)
CALL INSERT (XTAR, MU)

c
C DEPARTURE 2
C
XTAR(1) = X(1D)
XTAR(2) = X(2) - 1
CALL [NSERT (XTAR, MU}
C
C RETURN
C
RETURN
END

We note that even though the EVA-package allows
complete freedom to formulate the events and

their rates, It does take longer to program and de-
bug the subroutine "EVENTS" than it does to con-
duct a dialog in the QUE-package. There is thus a
price to pay for the increased flexibility.

V. THE CALCULATION OF THE PROBABILITY TO BE IN
STATE X AT TIME +.

The later sections are based on the calcula~-
tion of P(X;1), which is the probability to be in
state X at time t. [n this section, we thus ex-
plore the methods that are available to calculate
P(X;t). For convenience, we also define P(1) ‘o
be the probability vector for time t+, that is:

P(H) = [P(X;1) | Xes].

The problem thus consists of finding P(1),
glven P(0), using analytical methods.

In the following, we give a number of equa-
Tions for P(1).

1. According to the Chapman~Kolmorgorov
equation, one has:

d

T. PVt = 3§ a, PO D]
d+ ? xes XY

Here, axyis +h§ rate of going from X to
.Y, and:

a_ =-) a_ .

XX yex XY

2. Written in matrix form, the Chapman~
Kolmorgorov equation becomes:

d _ .
at B(tY = P(H) A, (2)
with:

A= [axy]'

3. A formal solution of (2) is given by

PUH) = P(O) exp (AT) =¥ P(O)(AT)"/n!.
n=0 (3)

The right-hand side of this equation is
the Taylor-expansion of the matrix ex-
ponential.

4. Using the event-notation given in Table
2, The Chapman-Kolmorgorov equation can
be written as:

d u -1, -
3+ POGH =e§] N [NI PLE, T(N;4]

= AY) PCY;). (4)

with:
u
e§1x2<X) =-a

AX) =

A(X) will also be referred to as the
leaving rate of state X.

We now consider the numerical solution of the
Chapman~Ko Imorgorov equation. For such a solution,
numerical stability is of prime importance. Fortu-
nately, it can be shown (Grassmann [3]) that any
algorithm which only deals with positive numbers,
and which does not contain subtractions is always
numerical ly stable. For such algorithms, one can
even calculate Tight bounds for the rounding error.

The first algorithm to be considered is the
method of Liou [8], which essentially uses +the
Taylor-expansion given in (3). This algorithm is
numerically unstable.

The second algorithm is Runge-Kutta, applied
To either equation (1) or (4). |t turns out that
Runge-Kutta is identical to Liou's algorithm,
applied in a step-wise fashion (see [7]). 1In

616 W.K. Grassman

other words, one first calculates P(h), given
P(0), then P(2h), given P(h), then P(3h), given
P(2h), and so on; until P(t) is found. While
doing this, one normally only ‘takes the first 4
terms of Taylor expansion given by (3), which
reduces ‘the numerical instabilities to an accep-
table level. Runge-Kutta has been used, among
others, by Odoni and Roth [12].

The' third algorithm is the randomization
method. - This method works as follows: First,
observe that any event with no effect (that
is, with fe(X) = X)) will have no influence on

any output statistic. We can thus introduce as
many of these null-events as we like. In par-
ticular, we can introduce null-events for each
state X in such a way that XX} has the same
value \ for each XeS. Thus, let xo(X) be the

rate of the null-events. Whenever an event or

a null-event takes place, we say that a jump has
occurred. Obviously, the probability that a
Jjump is caused by evente e=20, 1, ..., u is
given by:

PQ X) = Xe (X)/x.

The probability that after n jumps, the sysTem.
is in state Y can be calculated recursively as:

n S -1 n=1, ~1
PUYY = § P, DFT 0T PTG (6)
e=0
Here, PYY) is the desired probability. The in-
itial probabilities are obvioudsly given by:
POcyy = pev;00.

Once the PT(Y) are calculated, P(Y;+) is simply
(see e.g. [71, [81, [10] or [11D):

PY;1) =}
n=0

PY) plnsah). (N

Here, p{n;xt) is the probability of having n
Jumps during tTime t. [t can be shown that p(n;ii)
is Poisson, that is:

plosad) = &N (v Vit

‘Equations (5) and (6) describe the randominzation
method. Besides De Santis [1], Grassmann [5, 8],
Gross and Mitler [10], i+ has also been applied by
Melamed and Yadin [13] and others. The next sec-
+ion will further demonstrate and elaborate this
method. Here, we note the following:

(a) 'Randomization works exclusively on
positive numbers, and it contains no
subtraction which makes it numerically
extremely stable (see [3]1);

(b) Randomization is equivalent to Liou's
method, provided this method is applied

randomization seemsto be the best method
available.

VI. THE APPLICATION OF RANDOMIZATION

In this section, we first show how fo calcu-
late the P'(X) for the example given in Table 1.
We then consider several manipulations of equation
(7) which aliow us o find expectations of output
statistics directly.

In the example, The leaving rate X(X) obvious-
ly has its maximum if both servers are busy. Us-
ing the rates given in Table 1, A(X) is then
1+ 1.5+ 1.5 = 4. |f one or both of the servers
are idle, we have to inroduce null-events to com-
pensate. For simplicity, we consider these null-
events as departures, except that their effect is
nil. We thus have:

Pa = Probability of an arrival = 1/4 = 0.25

Pyq = Probability of a departure 1 = 1.5/4
= 0.375 -

Py, = Probability of a deparfure 2 = 1.5/4
= 0.375.

Since the events "Arrival 1" and "Acrival 2" are
mutually exclusive we can treat them like 1 -event,
except that we manipulate the effect corresponding

ly.

We .assume that the initial state is X1 = X2=0
or which means: .

P%(0,0) = P(0,0;0) = 1

All other initial probabilities are zero. Now,
let us consider the possibilities for the first
jump. Essentially, we have an arrival with pro-
bability 0.25, and a null-event with probability
0.75. Hence, after the jump p=1, we are in state
0,0 with probability 0.75 and in state 1,0 with
probability 0.25. Using a probability tree, we
can then calculate the probabilities for the dif-
ference possible states affer n jumps, given we
know the probabilities after n-1 jumps. For the
system in question, this can easily be done manu-
ally, and indeed, | recommend to the reader to do
these calculations himself. The results are given
in Table 5.

Table 5: The Calculation of

to find P(Y;1) e instead of P(Y;1), as
one can easily verify algebraically,
The stepwise application of randomization

Is thus equivalent to Runge-Kutta, applied

to P(Y;t) exp (Xt). IF has been .
. shown [4] that this adjustment improves
the performance of Runge - Kutta, at
least in the worst case. In short,

Jump (n) E(H - E(H
State 0 1 2 3 4 0.25))10.25)
0,0 1 0.75 }10.656{0.598{0,567
1,0 0.25]0.28210.293{0.286
1,1 0.062{0,07070.085
0.1 . 0.02310.035
2,1 0.016}0.018"
2,0 0.006
2,2 , 0.004
UE(Hn) 0 0.25 |0.406{0.504{0.573
p(n;l) 0.368|0.368|0.184{0,061{0.019 | 0.208
gin;1) 0.632}0.26410.080{0.019}0.004 0.136

According to equation (7), we can now obtain the
probability vector for time t by multiplying the
entries of Tabie 5 (if necessary expanded for n=5,
6, ...,) by p(n; At). However, if only the expec-
tations of certain output statistics are required,

Markov Modelling 617

one can use the following equations which can easily

be derived from equation (7)

E[H(H] = E
n=0
)

n=0

E(Hn) pln;»t) (8)

E [H(M]

E(Hn) qlin;z\T) (9

Here, H(t) and Hn are the values of a descriptor H
at Time +, respectively, after n Jjumps. HT) is the
value of H(T), averaged over the interval from 0O
to T. qln;xT) is finally given by
17T ©
1
alnst) == [pnst) dt = =¥ plm;NT).
T 0 AT mentl

If H is the number in the system, H(t) is +hus the
number in the system at time +, and H(T) is +he
number in the system, averaged from 0 to T.

in Table 5, the expectations of these two
output statistics are calculated for +=0.25, res-
pectively T=0.25, using equation (8) and (9). The
computational effort to do this is minimal.

VII. EQUILIBRIUM SOLUTIONS

In This section, we investigate +he long run
behaviour of Markovian systems, a topic of inter-
est both in simulation and in queueing. For this
purpose, let P(X) be the value of P(X;t) as + con-
verges toward infinity. Methods to caléulate

P(X) can be found in Steward [15], Goldberg [2] and

Grassmann and Taksar [9]. Here, we discuss three

of these methods, namely the method of Wallace [17],
the method of Gauss-Seide! [12], and Gaussian elim-

ination [2, 9].

1. The method of Wallace

Wallace observes that P (X) as given by
(6) converges toward P(X), and that for
farge enough n, PR(X) can thus be used as
an approximation for P(X). The main
question, which is by no means trivial,
is how one can assure that n is indeed
large enough to give P(X) with the re-
quired precision. Moreover, if care is
not taken that at least one recurrent
state has null-events, the chain X, may
be periodic, and equilibrium is never
reached. Nevertheless, Wallace's method
is a useful and numerically stable method.

2, The Method of Gauss-Seidel

To apply the method of Gauss-Seidel, the
states must be numbered. Thus, let X

be state.number 1, X, state number 2 etc.,
and assume that therg& are N=||S|] states.
Also, let bi' be the rate of going from
state Xi to gTaTe X., and let bi be the
rate of leaving X..” Finally, let P be
the equilibrium probability for state X,.
The equilibrium equations can then be
written as:

N
Y LI Y p.b... (10)

p.b. =
N P Wogsje 0

This suggests the following recursive

scheme:
$She o N n-1
pr=1 e+l i el
J =1 p 1=j+1 b;

Here, pn is The nth approximation to the
final probability p., given certain initi-
al values pQ. After each iteration, the
pq must be ﬁivided by an appropriate cons-

tant such that their sum becomes 1.

The method of Gauss-Seidel is very simi-
lar to the method of Wallace. The stop-
ping criterium may again pose a problem.
Moreover, in the method of Gauss-Seidel,
The convergence is effected by the order-
ing of the states. According o my ex-
perience, the method of Gauss-Seidel con-
verges faster than the method of Wallace,
although more research to corroborate
this finding would be desirable. | also
could not find any example in which the
method cycles, as it does sometimes in
Wallace's method, unless precautions are
taken.

3. The Method of Gauss-Jordan

The problem of the elimination of the p,
from the steady state equation by the
method of Gauss-Jordan is its numerical
stability. However, in [9], we described
a pivoting strategy which avoids sub-
tractions and operations with negative
numbers, ensuring thus numerica! stabili-
ty. As a starting point, one uses equa-
Tion (10). One now pivots, starting with
bN N and continuing with b I N=1? v

1+ +his is done, all off-diagohal b.. will

always stay positive. Moreover, Thé
pivot element in step n can be found as:

For the details of this method, we refer

to the paper mentioned above. Here, we
only note that the method is ideally
suited for banded matrices, that is,
matrices that have all b,. = 0 urless

i-g=<j=<i+h. As it turns out,

this is normally the case in Markovian
systems.

VIT1. COMPUTATIONAL CONS!|DERATIONS

Mathematicians usually think that a problem
is solved when all equations are writfen down.
In Markov Modelling, this is not true. Indeed,
the housekeeping chores and related matter are
both more difficult fo program and often more
time~consuming to execute than the straight-
forward mathematics. This begins with the
generation of matrices, which we now discuss.

The simplist method to find the transition
matrix is the following. First, one restricts

- - —
618 W.K. Grassman
the state space to some manageable size. In the transition matrix very difficult. Yet changing

example of Table 1, one could, for instance,
restrict both X1 and X2 to be at or below some
l'imit, such as 2. Next, one can enumerate all
states, X, and apply all possible events to each
state X. For our example, this is done in Table
6 (see also [6]). For instance, in state 0, O,
the only event that can occur is an arrival at
line 1, which brings us to state 1, 0, and which
happens at a rate of 1. For the next state in
lexigraphical order, namely 01, we either have an
arrival at line 1, which brings us fo state 1, 1,
or a departure from line 2, which brings us to
state 0, 0. The rates of these events are, res-
pectively, 1 and 1.5. 1In this way, one goes on
combining all events with all the possible states.

Table 6: Fixed Matrix Generation

StatefArrival | |Arrival 2 |[Departure 1 Depariure?2
lew |Rate{New]Rate|liNew | RatejNew |Rate
| State State J|State State

0,0 1,0 |1 |- -

0,1 [1,1 |1 |- - 0,0 |1.5

0,2 {1,2 {1 |- - 0,1 [1.5

1,0 |- 1,1 |1 fio,0 |[1.5 |-

1,1 {2,111 |- 0,1 11.5 1,0 |1.5

1,2 (2,2 {1 |- f{0,2 [1.5 {1,1 1.

2,0 |- 2,1 {1 {hh,0 [1.5 |~

2,1 |- 2,2 |1 1,1 1.5 (2,0 |1.5

2,2 |- - 1,2 [1.5 |2,1 |1.5

The entries of this Table can now be stored in
arrays. In the QUE-package, for instance, the
original state is stored in an array ORIG, the
corresponding new or fTarget state in an array TARG,
and the rate in an array RATE. Thus, in the first
2 rows of Table 6 would be stored as:

ORIG(1) = 0.0 TARG(1} = 1,0 , RATE(1) =1
ORIG(2) = 1,0 TARG(2) = 1,1 , RATE(2) = 1
ORIG(3) = 1,0 TARG(3) = 0,0 , RATE(3) = 1.5

The states are then numbered consecutively for
easier reference. In algorithmic terms, one thus
has:

1. "NST =0
For all XeS, do following
For all events e~1,2,..., u, do follow-

ing
If event ¢ is possible
NST = NST + 1
ORIG(NST) = X
TARG(NST) = f (X)
RATE(NST) = XZ(X).

2. Replace all state descriptors by a unique
reference number between 1 and N.

After the above algorithm has been completed,
the elements are stored in a form suitable for
doihg randomization and the method of Wallace.
They are not stored suitably to apply the method
of. Gauss=Seide!l or Gauss~Jordan. The reason js
that the entries are generated by rows, whereas
both, Gauss-Seidel and Gauss-Jordan require the
entries by columns, as evidenced by equation (10).
For t+he fatter two methods, the states have to be
re-ordered. This re-ordering may seem a trivial
task, but i+ makes such things as changing the

the transition matrix is very important, especially
for doing sensitivity analysis and analyzing sys-
tems with changing rates. The methods of Gauss-
Seidel and Gauss-Jordan have thus a definite dis-
advantage here.

When constructing Table 5, we suggested to use
decision trees to find the new states and their
probabilities. 1In this method, we do not generate
a state before its probability is different .from
zero. This adaptive method has several advantages
over the fixed method discussed esarlier. |n par-
ticular, one need nof limit the state space in
advance. Moreover, one can easily program this
method in such a way that new states are only infro-
duced if their probability exceeds a certain fower
limit, removing thus unlikely states from consid-
eration. Finally, since states with a probability
of zero are ignored, there is a possible reduction
in computer time.

On the other hand, this method has two dis-
advantages. First, one must find an efficient
method to identify a state &s new or old, because
the method works too slowly otherwise. In the EVA-
package, This state identification is done through
hashing, but multiple linked lists are also pos-
sible. The second disadvantage is that the method
generates the new states row-wise. This means that
the adoptive method is not applicable for Gauss-
Seide! or Gausss-Jordan. !t is applicable for
Wallace's method though.

A major consideration for all methods is the
computer time. In the iterative methods, this
tTime depends essentially on two variables, namely
the number of iterations needed, and the number of
non-zero enfries in the fransition matrix (we
consider this matrix as fixed for the moment).
Specifically, the number of operations is given for
all’ three iterative methods as:

2rm + d .)
Here, r is The number of iterations, and m is the
number of non-zero entries in the transition mat-
rix, and d is a number small wheh compared to m.
To illustrate how This formula would work out con-
sider a Markovian system with u events and d
state variables. Each of these d state variables
can assume exactly 3 different values, and all
events are possible for each possible states.
The number of non-zero entries becomes then

d
z"u and one has:

2rzdu

operations. |f there are, for instance, d=3
state variables, each being able 1o assume 10
different values, and if one has 4 events, which
would be typical for such a system, one has 8000
operations per iteration, which is net much for a
modern compufer. However, each additioral state
variable increases the computational effort by.a
factor, and this exponential growth will soon be=
come intoferable. In short, for smal! systems, the
methods discussed here are extremely convenient
and fast, especially when using packages. For
systems with many state variables, however, they
are not recommended.

Markov Modelling

REFERENCES

M. De Santis, Markovian Models for Time-Sharing

Systems, M.Sc. Thesis, University of Saskat-
chewan, Saskatoon, April 1977.

H.M. Goldberg, Computation of State Probabili-
ties for M/M/s Priority Queues with Customer
Classes Having Different Service Rates, INFOR,
19 (1) Feb. 1981, pp. 48-58.

W. Grassmann, Rounding Errors in Some Recur-
sive Methods Used in Computational Probability,
Dept. of O0.R., Stanford University Tech Report
73, April 1983.

W. Grassmann, The GI/PH/1 Queue, [INFOR, 20 (2),
pp. 144-156, May 1982.

W. Grassmann, The QUE-Package, Session 82 of
the Canadian Information Processing Society,
pp. 104-108, Saskatoon, May 1982,

W. Grassmann, Stochastic Systems for Manage-
ment, American Elsevier, 1981.

W. Grassmann, Transient Solutions in Markovian
Queues, EJOR 1, pp. 396-402, 1977.

W. Grassmann, Transient Solutions in Markovian
Queueing Systems, Comput & Ops. Res., 4, pp.
47-53, 1977.

W. Grassmann, M. Taksar, Applications of Semi-
Regenerative Theory to Computations of
Stationary Distributions of Markov Chains,
Dept. O0.R., Stanford University, Tech. Report
77, May 1983.

10.

1.

14.

16.

17.

619

D. Gross, R.D.R. Miller, The Randomization
Technique as a Modelling Tool and Solution
Procedure for Transient Markov Processes,
Operations Research, to appear.

A.T. Kohlas, Stochastic Methods of Operations
Research, Cambridge University Press, 1982.

F.S. Hillier, R.W. Boling, Finite Queues in
Series with Exponential Erlang Service Times,
Operations Research 15, pp. 268-303, 1967.

B. Melamed, M. Yadin, Numerical Computation
of Sojourn Time Distributions in Queueing
Networks, preprint, 1981.

A.R. Odoni, E. Roth, An Empirical Investiga--
tion of Transient Behavior of Stationary
Queueing Systems, Operations Research 31, (3},
pp. 432-455, 1983.

W.T. Steward, Comparison of Numerical, Tech-
niques in Markov Mode!fling, Com. of the ACM,
21, pp. 144-152, 1978.

V.L. Wallace, R.S. Rosenberg, RQA-1, The
Recursive Queue Analyzer, Systems Eng. Lab,
University of Michigan, Ann Arbor, Tech. Re-
port 2, 1966.

V.L. Wallace, Markovian Models and Numerical
Analysis of Computer System Behavior, Proc.
AFIPS, Spring Joint Computer Conference, 28,
pp. 141-148, AFIPS-Press, 1966.

