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Time series models for positive-valued and discrete-valued input processes are
discussed, with the emphasis on the simulation problems which arise in generating

time series from these models.

1. SUMMARY

Simple, additive models have long been available
for dependent sequences of continuous random

variables when the marginal distribution of the
Xi‘s is Gaussian. These autoregressive-moving

average ARMA(p,q) processes are also easy to
generate on computers. Generalizations to other
marginal distributions, and in particular to the
positive random variables which occur in
Operations Analysis, have only recently begun to
appear.

The first-order autoregressive process, AR(1), is
defined as

Xi = pXi‘+ E_i ,

where |o| <1 and the E, are independent. If

an E, exists for 0 <p <1 such that the X,
have a given distribution, FX(x) , then that

random variable X is called Type-L or self-
decomposable. Examples are the exponential and
Gamma distributions. For the exponential case
E; has a very simple form (Gaver and Lewis,

1980) but the process is defective. Extensions
to non-degenerate first-order autoregressive
processes in the exponential case have been found
and these processes (NEAR(1), Lawrance and Lewis,
1981) can be extended to second-order autoregres~
sions, NEAR(2), (Lawrance and Lewis. 1983).
Higher order autoregressive structures probably
also exist. In the Gamma case the Ei can not

be found explicitly, but a method for simulating
it has been found by Lawrance (1982). The pro-
cess is, however, still degenerate. A broader
and better behaved process was derived by Lewis

(1982) using the Beta-Gamma transformation, and a
multiplicative process was given by McKenzie
(1981).

Various other continuous extensions of autoregres-
sive processes have been obtained. AR(1) models
with mixed exponential marginal distributions
exist, but not for all values of p . The NEAR(2)
structure generalizes quite easily to the case of
Laplace distributions. For the exponential case,
at least ten first-order autoregressive processes
are now known. A problem is that negative serial
correlation is difficult to obtain.

For discrete random variables, the analog of the
(Gaussian) first-order autoregressive process is
the first-order Markov chain. However, it is
over-parameterized, especially for statistical
purposes, and is not simple to simulate if the
state space is large.

A very simple mixture model, DAR(1), was intro-
duced by Jacobs and Lewis (cf. 1983); it is an
explicitly autoregressive discrete process which
works for any marginal mass function I . It is
in fact a Markov chain whose transition matrix is
determined by T and a parameter p , which is
the first-order serial correlation, with

0 <p<1. This model generalizes to two types
of mixed autoregressive-moving average structures,
DARMA(p,q) and NDARMA(p,q). A drawback is that
sample paths tend to “stick", giving "long" runs
of the same value. A notable result here is that

for the Markoyian DAR(2) and DAR(3) processes,

the joint 1imiting distribution of pairs and
triples of Xn‘s is known. Thus it is possible

to simulate the stationary process for any
marginal mass function I .

A discrete analog for self-decomposable (continu-
ous) random variables was given by Steutel and
van Harn (1979) in the form
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= *
Xn o Xﬂ'1 + Gn‘ R

where o * Xn-] is, conditional on Xn_1 =j,a
Binomial (j,a) random variable. For Xn with a
Poisson distribution, Gn is Poisson; this is

the process which would be obtained by sampling

an M|[M|» queue at regular intervals. The form
of G_ 1is also known for negative binomial random
variables, and for compound Poisson random
variables.

In addition, McKenzie has shown that discrete
analogs of the NEAR{2) structure exist for geo-
metric random variables, and that discrete ana-
logs of the Beta-Gamma process exist for negative
binomials. Moving average analogs can also be
found. Methods for obtaining negative correla-
tion in these processes will be discussed, as
well as the probiem of modelTing inhomogeneities
in discrete valued time series.
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