Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

EVENT LIST MANAGEMENT - A TUTORIAL

James 0. Henriksen

Wolverine Software Corporation
7630 Little River Turnpike - Suite 208
Annandale, VA 22003-2653

Proper management of the event list is critically important for achieving
execution efficiency in discrete event modelling of computer, telecommunication,
and other frequently occurring classes of systems. For such systems, use of a
poor event list algorithm can result in horrendous inefficiency. Conversely,
replacement of a poor algorithm with a good algorithm can reduce execution times
tremendously. For example, in models of telecommunication systems, total run
times can easily differ by as much as 5:1, depending on choice of event list
algorithm. Many papers have been written about event 1ist algorithms.
Unfortunately, the variance in quality of what has been written closely parallels

the variance in performance of the algorithms themselves: everything from
scholarly works to utter nonsense has been published.

Among the persistent myths of simulation is the "fact" that major simulation
languages fail to make use of advanced event 1ist algorithms. This is patently
false. GPSS/H (Henriksen & Crain 198%) has used an improved algorithm (Henriksen
1977) since 1977, and SLAM (Pritsker 1979) has used an improved algorithm (a
variant of the GPSS/H algorithm) since the advent of SLAM II in 1981.

Before proceeding, we briefly summarize the sections which follow. Section 1
defines what is meant by the phrase "event list algorithm." Section 2 presents a
hypothetical example, to illustrate the spectacular failure of a naive event list
algorithm. Section 3 describes a simple alternative algorithm which is effective

when applied to the example of Section 2, but lacks generality.

Section 4

presents criteria for evaluating event list algorithms. Section 5 describes some
alternative general-purpose algorithms which have been devised, and reviews a

number of written works about event list algorithms.

Section 6 presents a

detailed description of the algorithm used in GPSS/H (Henriksen 1977). Finally,

Section 7, offers conclusions.

1. EVENT LIST ALGORITHMS DEFINED

In discrete event simulation languages, an event
is an instantaneous change in the state of a model
at a specific point in simulated time. Most
languages include time-ordered 1lists of events
scheduled to take place in future (simulated)
time. Depending on the language, such a list may
be called the event file, the event set, the
future events chain, the sequencing set, etec. We
use the phrase "event 1list" to describe such
lists. Specifically excluded from this
designation is the GPSS current events chain,
which is wused to manage events which have the
potential to take place at the current instant of
simulated time. The elements of an event list may
be called event notices, transactions, activation

'

records, etc. We use the phrase "event notice" to
refer to such elements. BEvent notices contain the
simulated time at which an event is scheduled to
occur, a designation of which event in the model
is to occur, and other attributes necessary for
occurrence of the event.

The design of an event list representation
includes definitions of event notices and other
supporting data structures, such as 1list origins
and terminators. An event 1list algorithm
comprises procedures for insertion and deletion of
event notices from the list and for manipulation
of supporting data structures. In the sections
which follow, emphasis is placed on procedures for
insertion of event notices. Deletion of event
notices is of lesser importance, because in most

CH1953-9/83/0000-0543 $01.00 © 1983 IEEE

544 James 0. Henriksen

s

cases, event notices are deleted in sequential
ordér from the front of the list. However, most
languages provide mechanisms for removal of
arbitrary event notices from positions other than
the start of the event list. For example, the
Simscript CANCEL statement and the GPSS PREEMPT
and FUNAVAIL statements can cause such removals.
While the removal of event notices from arbitrary
positions in the event 1list may require_ special
actions, in most models, such processing occurs
much legs frequently than “normal” event list
processing. Hence, we emphasize procedures for
event notice insertion and mention procedures for
deletion ,only where they are important.

2. SPECTACULAR FATLURE OF A POOR ALGORITHM
2.1 The .Most Commonplace Poor Algorithm

The most commonplace algorithm for insertion of
event notices into the event list is linear search
in descending time order. The algorithm works as
follows‘:(BEvent notices are chained together on a
doubly linked list (with forward and backward
pointers). When an event is scheduled to occur at

4 gimulated time T, the event list is searched in

decreasing time order, from the event notice for
the event (if any) -currently scheduled to occur at
the most distant point in simulated time, down to
the event notice for the event (if any) currently
scheduled to occur at the next imminent instant of
gimulated time. The event notice is inserted
after the first event notice (if any) found with a
time value less than or equal to T. To facilitate
the search process, dummy event notices with times
of -infinity and +infinity may be used to anchor
the bottom and top ends of the event list. The
use of such dummy notices assures that any "real”
event notice will always have a predecessor and a
suCCessor.

The rationale given for use of linear search in
descending time order is that as the execution of
a model moves forward in simulated time, events
are scheduled further and further into the future,
and that while the insertion of some event notices
may require searches of moderate length, the
insertidn of most event notices will require
relatively short searches. Research reported by
McCormack (1979) and McCormack & Sargent (1981)
reveals that the distribution of search lengths
for event list insertion operations is far more
complex than these naive, but seemingly
well-motivated assumptions would seem to indicate.
As we shall see in Section 2, models which violate
these assumptions are commonplace.

While the use of linear search in descenhding time
order is'commonplace, it is by no means universal.
The "fact" that all major simulation languages use
this algorithm is one of the most persistent myths
of simulation literature.

2.2 A Médel to Illustrate Algorithm Deficiency

Figure.1 is a state~transition diagram which
naively characterizes a timesharing computer
“system. In this naive model, a fixed number of
users endlessly cycle through three states:
thinking, typing a command; and receiving output
as the result of entering a command. Thinking

times are distributed uniformly as 55 seconds.
Command lengths are distributed uniformly as 10+5
characters, and characters are <iyped’at Ta
uniformly distributed speed of 250+100
milliseconds per character. Output message
lengths are uniformly distributed as 175+125
characters, and they are assumed to be transmitted
at a rate of 120 characters per second. (1200
Baud). The host computer is assumed to respond
instantaneously to all commands, and interference
among users is ignored. These assumptions are, of
course, totally unrealistic, but our objective is
to illustrate performance of an event list
algorithm, not to present a highly detailed model
of a computer system.

{ ‘ l

+ RECEIVE

THINK { TYPE

Figure {: Timesharing User Behavior Pattern

2.% "Hand Calculator" Analysis of the Model

Using the means of the distributions given above,
we can calculate the probabilities that a user
will be in each of the three states. The mean
length of a cycle is 8.96 seconds (5 seconds
thinking + 2.5 (10 / 4) seconds typing + 1.46
(175 / 120) seconds receiving output). Thus, the
probabilities of being in the thinking, typing,
and receiving states are 0.56 (5 / 8.96), 0.28
(2.5 / 8.96), and 0.16 (1.46 / 8.96),
respectively. Since the number of terminal users
in the model is fixed, and the user population is
homogeneous, the probailities of a single user
being in each of the three states can be used to
determine the expected number of users that are in
each state at any given time. Thus, at any given
time, the expected percentages of users who are
thinking, typing, and receiving are 56%, 28%, and
16%, respectively.

Again using distribution means, we can compute the
expected percentages of event types that occur.
In a cycle, there is exactly one end of thinking
time event, an expectéd value of 10 typing events,
and an expectéd value of 175 recelving events,
making an expected total of 186 events per cycle.
Thus, the percentages of events of the three types
are 0.5%, 5.4%, and 94.1%, respectively.

When a receiving event is scheduled, its event
time is always equal to the current time plus 8.3
milliseconds (1/120 second). Given the magnitude
of +the thinking and typing event interarrival
times, we_ cen expect that a linear search in
“descending time order will "usually"” regquire
examination of all ("except perhaps 1 or 2") of
the currently scheduled thinking and typing
events. Given the constant interarrival time (8.3
milliseconds) between receiving events, each time
a receiving event is scheduled, it will become the
receiving event with the largest event time.
(Ignoring time ties, it must fFfall after any

Event List Management « A Tutorial 545

previously scheduled receiving event.) To
summarize our primitive analysis, 94.1% of the
time an event is scheduled, we can expect to
examine 84% (56% +28%) of the event notices.

2.4 Testing a Poor Algorithm

To test the linear-search-in~descending-order
algorithm, the GPSS model shown in Figure 2 was
written and run under a version of GPSS/H
specially modified to use (and collect statistics
upon the operation of) the 1linear search
algorithm. The model was run for configurations
of 10, 50, and 100 terminal users. The results
are shown in Figure 3. The mean search lengths
observed are consistent with the analysis given in
Section 2.2, and the dramatic increases in
execution times as configuration size increases
are readily apparent. In short, performance is
wretched.

3. A SOMEWHAT IMPROVED ALGORITHM

The analysis of Section 2.2 suggests a simple
alternative to linear search in descending time
order: why not use linear search in ascending time
order? According to that analysis, i1if we use
linear search in acending oxder, 94.1% of the
events scheduled will require examination of 16%
of the event notices.

To test this hypothesis, another specially
modified version of GPSS/H was developed %o
incorporate the linear-search-in-descending-order
algorithm. The results shown in Figure 4 are
consistent with the foregoing analysis.

4, CRITERIA FOR EVENT LIST ALGORITHMS
4.1 Search Lengths

An event list algorithm should keep search lengths
within reasonable bounds. As the example of
Section 2 illustrated, simple models can easily
result in search lengths which account for most of
the CPU time consumed executing the model.

4.2 Speed

An event 1list algorithm should execute rapidly.
If the steps taken to reduce search lengths
require complicated computations, the advantages
attained by reducing search lengths are diluted.

4.% Robustness

Any event list algorithm intended for general use
should operate well across a wide range of event
scheduling distributions. While performance in
any given model may be less than that which could
be obtained by an application-tailored algorithm,
performance should not degrade dramatically. The
linear search algorithms discussed in Sections 2
and 3 illustrate this point. In models which have
large numbers of event notices in the event list,
we can expect that where one of the search
algorithms performs poorly, the other will perform
better, if not well. Thus, neither algorithm can
be considered robust enough for general use.

4.4 Automatic Operation

An event list algorithm which automatically adapts
to the number and distribution of event notices in
the event list is generally preferable %o an
algorithm which requires user specification of
algorithm parameters:” . A number of improved event
list algorithms (some of which are discussed
below) require specification of algorithm
parameters. The sensitivity of algorithm
performance %o parameter values is sometimes
disputed: authors may claim relative
insensitivity, while others provide empirical
counterexamples.

4.5 Testing Procedures

Many papers written about -event list algorithms
have employed the HOLD model for testing purposes.
The HOLD model operates as follows: (A) the event
list is initialized by filling it with a number of
event notices whose interarrival times are all
sampled from a single distribution; (B) transient
conditions are removed by repeatedly (several
thousand times‘?) removing the next imminent event
from the event set and rescheduling it; and (¢)
steady state statistics are collected by
circulating event notices (in the manner of (B)) a
large number of times. McCormack & Sargent (1981)
point out that the HOLD model differs from most
actual simulations in three ways: {A) in real
models, the size of the event list is rarely
constant; (B) in real models, events are not
independent; i.e., occurrence of an event of one
type usually influences the occurrence of events
of other types; {(C) in real models, events of
different types sample their interarrival tinmes
from different distributions; i.e., the
homogeneity inherent in the HOLD model is
atypical.

Despite its deficiencies, the HOLD model does
produce useful information, and it is easily
programmed . However, the HOLD model cannot be
used alone; rather, it must be used in conjunction
with other testing procedures. The ultimate test
of an algorithm is its performance in real-world
models. Therefore, an algorithm should be tested
against a variety of well-chosen applications.
The frustration inherent in such testing is that
one can never prove that an algorithm works by
testing it. One can only prove that it fails.

In many of the published analyses of event list
algorithms, CPU time has been used as the
dominant, if not exclusive, measure of
performance. While CPU times provide the ultimate
measure of performance (cost), they fail to reveal
the components of performance. TFor example, the
collection of search length distributions can help
to differentiate inherent algorithm performance
from speed gains or losses resulting from the
quality of +the program which implements the
algorithm. If an algorithm has acceptably short
search lengths, but runs unacceptably slowly, the
implementation of the algorithm should be examined
carefully to try to find bottlenecks.

546 James 0. Henriksen
SIMULATE
REALLOCATE COoM, 15000 ENOUGH STORAGE FOR XACTS
* .
* SIMPLIFIED TERMINAL MODEL
*
‘GENERATE ys,100 100 TERMINALS
THINK ADVANCE 5000, 5000 THINK 5 +- 5 SECONDS
ASSIGN 1,5+RN1@11,PH WILL TYPE 5-15 CHARACTERS
TYPE ADVANCE 250,100 TYPE APPROX 4 CHAR/SEC
LOOP 1PH, TYPE '
ASSIGN {,50+RN1@251,PH RECEIVE 50-300- CHARS
. RECV ADVANCE 8 1200 BAUD => 8.3%3% MSEC
LOOP 1PH,RECV
TRANSFER , THINK
*
* TIMER SEGMENT
*
GENERATE » , 100*1000 SIMULATE FOR 100 SECONDS
TERMINATE 1
START 1,NP
END
Figure 2: GPSS Model of Timesharing User Behavior
Number Number of Events Insertion Search Lengths Execubion OPU Time / Number
of Users ‘Scheduled Average Maximum of Statements Executed
10 | 20045 9.15 11 182,14
50 98878 42.24 51 375.98
100 196875, 82.77 101 581.33
Figure 3: Results Using Linear Search in Descending Order
Number Number of Events Insertion Search Lengths Execution CPU Time / Number
of Users Scheduled Average Maximum of Statements Executed
10 20045 2.85 11 165.76
50 98878. 9.75 51 201.39
100 o 196875 19.20 101 23%5.22

Figure 4: Results Using linear Search in Ascending Order

. The failure to observe all pertinent statistics
can result in inc¢orrect conclusions. The
following (admittedly ridiculous) example
illustrates this possibility. Assume that an
event 1ist algorithm is %o be devised for a
gimulation which entails scheduling 10,000 events
over a simulaﬁed time rangihg from zerc to
1,000,000. One possible algorithm might be to
preformat the event 1list with 100,000 “dummy”
event notices, equally spaced 10 time units apart.
"Real" event notices would be interspersed among
the "dummy" notices. In order to insert into the
event list an an event notice scheduled to occur
at time T, ome could simply compute I = T / 10 as

the estimated insertion point of the event notice,
and perform a linear search from that point to
determine the exact insertion point. If the
measure of performance were simply search length,
one would doubtless conclude that the performance
of the algorithm was excellent, since the
probability of of an estimated insertion point
being cloge to the actual insertion point is
extremely high. Couched in the ferms of computer
science, the search length would be described as
"of order 1." Unfortunately, congideration of
search length alone fails to reveal a very large
component in the performance of this ‘algorithm:
skipping over dummy notices to find the first

Event List Management - A Tutorial 547

"real" event notice each time the simulator clock
is to be updated. Assuming that "dummy" notices
are not recycled, we know that the scheduling of
10,000 events will entail skipping over 100,000
"dummy" notices. Thus for every order 1
insertion, ten "dummy" notices must be skipped
over.

4.6 The Best of All Worlds

The ideal event list algorithm is a fully
adaptive, high-performance algorithm which
performs well over a wide variety of applications
without ever seriously degrading. If simulations
for which the algorithm is to0 be used allow
removal of arbitrary event notices, the algorithm
should work well for such operations (preferably
with performance equal to that of the insertion
operation.) Arbitrary removal operations are
required to support such language constructs as
the GPSS PREEMPT and FUNAVAIL blocks and the
Simscript II.5 CANCEL statement.

5., OTHER ALGORITHMS AND LITERATURE
5.1 Historical Notes and References

A number of interesting papers and at least one
doctoral dissertation have been published on the
subject of event list algorithms. One of the
earliest event list papers to appear was Vaucher &
Duval (1975). Much of what has been done since
can be considered as building upon or reacting to
the ideas they first expressed, although Wyman
(1976) must be given credit for independently
proposing a similar algorithm. Vaucher and Duval
compared the performance of the linear search
algorithm (descending order), two tree-based
algorithms, and their own "indexed list"
algorithm. The indexed list algorithm drew upon
previously published approaches used in digital
logic simulation (Szygenda, et. al. (1971) =and
Ulrich (1969)). 'Their tests were conducted by
using the HOLD model (see Section 4.5 for a
description therof), which was apparently first
used by Myhrhaug (publication date unknown).

Improved variants of the indexed list algorithm
were developed by Franta & Maly (1977) and
Henriksen (1977). Henriksen's algorithm is
described in detail in Section 6.

Comfort (1981) and Comfort & Miller (1981) have
published some interesting work on the use of
dedicated event set processors.

Blackstone et. al. (1981) developed a "two-list"
procedure that has been described in at least
three papers in addition to the cited reference.

McCormack's doctoral dissertation (1979) is a
landmark work comparing a variety of event list
algorithms. Results obtained are also summarized
in McCormack & Sargent (1981).

5.2 Performance: Claims and Counterclaims

Event list algorithm literature is a vast sea of
contradictory claims. Sorting out the claims and
counterclaims is made difficult by the fact that
methodologies for algorithm evaluation vary widely
‘among authors. Even where CPU times are chosen as

the primary basis for comparisons, hardware
architecture, choice of language, and object code
efficiency are difficult to assess, particularly
when hardware and software of different suppliers
are used. In the paragraphs which follow, a
number of the more significant controversies are
presented.

5.2.1 Franta & Maly - Franta & Maly (1977, 1978)
have made several claims that others have
disputed. First, they have claimed that t{heir
algorithm (the "two-level” .algorithm) is superior
to the indexed list algorithm of Vaucher & Duval
(1975) and Wyman (1975). McCormack & Sargent
found exactly the opposite to be the case, and

.offered two possible explanations:

"One is that previous tests used Pascal
EMcCormack & Sargent used Fortran.] ceny
and] the second reason could be that an
error exists in the implementation [Franta &
Maly used]. The effect of this error is to
lose some ingerted records, thus reducing the
size of the future event set. This error
does not appear in a later implementation...”

A second claim made by Franta & Maly (1978) has
been disputed by several others. Their
experimentation and analysis led them to conclude
that their two-level algorithm was superior to the
heap method. Their 1978 paper was written in
response to a suggestion by Gonnet (1978) that the
heap algorithm was superior to that of Vaucher &
Duval (1975). Once again, the results of
McCormack & Sargent contradicted the findings of
Franta & Maly.

A third claim made by Franta & Maly (1978) is that
"... average complexity for the TL [two-level]
structure is [of order 1], experimentally
determined." Alternatively stated, they claim
that their algorithm is insensitive to the number
of. event notices in the event list. At complete '
odds with the results of others, this bold asser-
tion cries out for further investigation.

5.2.2 Blackstone, Hogg, Phillips, and Rodriguez -
Blackstone, Hogg, and Phillips (1981a, 1981b);
Rodriguez, Blackstone, and Hogg (1982); and
Blackstone & Hogg (1982) have developed an event
list algorithm called the two-list algorithm. In
the various descriptions of their algorithm, the
authors have made claims which are erroneous, and
they have offered questicnable advice %o
simulation practitioners. The following
statements are made in Blackstone, Hogg, and
Phillips (1981Db):

"To date, no major general purpose simulation
language has adopted an advanced
synchronization procedure, probably because
of the requirement for external optimization.
«e. GEMS [a language developed by Phillips

- and others] is thus the first general purpose
gsimulation language to adapt [sic] an
advanced synchronization procedure.”

Henriksen (1977) reported results of incorporating
an improved algorithm into GPSS/H, and a variant
of the GPSS/H algorithm has been used in SLAM
(Pritsker 1979) since the advent of SLAM II in
1981. The GPSS/H algorithm (described in Section

548 | James 0. Henriksen

6, below) is totally adaptive and has no
requirements for external optimization.

The following statement is made in Blackstone,
Hogg, and Phillips (198%1a, 1981b):

"The authors believe that the two-list
procedure is ideal for general purpose
languages and that such languages should
adopt the structure.”

Neither of these papers present any empirical
results to support this recommendation.
Furthermore, some potentially excellent
algorithms, e.z., the GPSS/H algorithm and the
heap algorithm are ignored. The authors do admit
their that algorithm is "probably" slower than the
Franta & Maly algorithm and the indexed list
algorithm. McCormack & Sargent found both of
these algorithms inferior in performance to the
GPSS/E and heap algorithms. While Phillips,
et. al.'s advocacy of their algorithm is based, in
part, upon considerations other than performance,
their arguments are weakened by their failure to
consider alternative approaches which appeared in
the literature long prior to their work.

6. THE GPSS/H ALGORITHM
6.1 How the GPSS/H Algorithm Works

In this section, a detailed description of the
GPSS/H algorithm (Henriksen (1977)) is given. The
presentation herein differs somewhat from the
original presentation, reflecting considerations
that arose when implementing the algorithm in a
high-level language. (The original version was
written in assembly code.)

The GPSS/H algorithm operates as follows:

A. The event set is bracketed by dummy event
notices on the left (low time) and right
(high time) ends, as shown in Figure 6.
These dummy notides servé as a virtual
predecessor of the first (lowest time) "real"
event notice and as a successor to the last
(highest time) "real"” event notice,
respectively. Thus, every "real" event
notice has a successor and a predecessor,
allowing a symmetry of treatment.

B. A binary tree with the following
properties is built "on top" of the event
list:

te 'Each node in the tree has.the format
shown in Figure 5. Each node contains a
pointer to an event notice, the
simulated time at which the event
corresponding to the evént notice is
scheduled to occur, left son and right
son pointers, and a pointer to the next
lower time node in the tree. For leaf
nodes (at the bottom of the tree), the
left and right son pointers are zero.
For the lefimost (minimum time) node of
the tree, the "next lower time" pointer
is zero. A three-node tree is shown in
.Figure 6.

Poiﬁter to Next Lower Time Tree Node

Pointer to Left Son Tree Node

Pointer to' Right Son Tree Node

Scheduled Time of the Event

Pointer to the Event Notice

Figure 5: Format of a Binary Tree Node

2. 1Initially the tree has only a single
node; i.e., it is degenerate. That node
points to the dummy node at the high end
of the event set.

C. Wnen an event notice is to be inserted
into the event set, the binary tree is
searched %to find the node which has the
lowest time greater than the scheduled event
time of the event notice being inserted.

D. A linear search (in descending time
order) is initiated, starting with the event
notice to the left of the event mnotice
pointed to by the node selected in step C.

E. The linear search continues until one of
two events occurs:

1. If the appropriate insertion point
is found by examiping four or fewer
event notices, the event notice is
spliced into the event list at the
insertion point. (The insertion point
is determined by encountering an event
notice with a time less than or equal to
the time of the event notice being
ingerted.)

2. 1If the insertion point is not found
after examining four event notices, an
attempt is made %o perform a "pull”
operation. The "next lower time"
pointer of the binary tree node selected
in step C is examined. (Note: the "next
lower time" pointer is not the left son
pointer.) If it ig non-zero, the mnode
it points to is modified by changing its
~ event notice pointer to point to the
most recently examined event notice.
The linear search continues with step D,
using the modified tree node in place of
the mode originally selected in step C.
If the "next lower time" pointer is
zero, there are no lower time . binary
tree nodes to be modified. In this
case, the depth of the tree is increased
by adding a level. The expanded treé is
jnitialized by setting its lefimost leaf
o point to the dummy event notice at
the right (high time) end of the event
list, and all other nodes are get to
point to the dummy event notice at the
left (low time) end of the event list. =
Execution continues with step C.

Event List Management - A Tutorial 549

No subsequent attempts are made +to
reduce the size of the binary tree. It
is assumed that once the +tree has
attained a given size, even if the tree
size could be subsequently reduced in
accordance with some "reasonable"
criteria, it would probably have to be
increased again. Thus, reducing tree
gize could become counterproductive,
and, unless extreme care were taken in
designing the criteria for reduction of
the +tree size, oscillation could take
place, with the adaptive mechanisms of
the algorithm continually reducing and
increasing the size of the tree.

The “pulling" of event notice pointers
from left to right is an attempt to keep
the binary tree balanced. In practice,
the tree can occasionally become badly
imbalanced, so while the average
performance of the algorithm is good,
maximum search lengths can be
spectacularly long. Test results
presented in Section 6.2, below, confirm
this tendency.

F. Removal of event notices from the left
end of +the event 1list requires no
modifications to the binary tree; i.e., it
makes no difference that the tree contains
pointers to an event notice removed from the
left end. Because the simulator clock cannot
move backwards, we are guaranteed that the
time of any event notice inserted into the
event list must be greater than (or at worst,
equal to) the current value of the simulator
clock, which in turn must be greater than or
equal to the time of the most recently
removed event notice. Since the binary
search of step C searches for a tree node
with a time greater than the event time of
any event notice to be subsequently inserted,
nodes which point to "stale" times (less than
or equal to the current value of the
simulator clock) can never be selected as the
result of the search. Event times are stored
directly in the nodes of the binary tree for
this very reason; i.e., it is essential +to
the opetration of step C that time
comparisons be made without examining event
notices.

G. When an arbitrary event notice is to be
removed from the event list, the position of
the event notice in the event list is known
a priori; however, because the binary tree
may contain one or more nodes which point to
the notice to be removed, a search must be
conducted, and any nodes found to point to
the event notice must be modified. The
search is conducted as follows:

1. The tree is searched (as in step C)
to find the node with the lowest time
greater than the time of the event
notice being removed.

2. If the "next lower time" pointer of
the selected node is non-zero, the node
to which it points is examined to see
whether it points to the event notice
being removed. If it does, its event
notice pointer is revised to point to

the predecessor of the notice being
removed, and its time is updated %o the
time of the predecessor notice.

3. Step 2 is repeated for all tree
nodes (if any) which have an event time
equal to the event notice being removed.
The scan loop is exited upon (a)
encountering a zero "next lower time"
pointer or (b) encountering the firsi
node with an event time less than that
of the event notice being removed. This
secondary scan 1is necessary, because
occurrence of "time ties" can result in
more than one node -with a given time
value. If deletion of arbitrary event
notices is allowed, more than one tree
node can point to a given event notice.
In practice, this is occurs very rarely.

The GPSS/H algorithm has the following desirable
attributes:

A. It is totally adaptive; i.e., it requires
no estimation of algorithm parameters on the
part of the user.

B. Its performance is excellent, as reported
in McCormack & Sargent (1981).

C. It appears to be robust across a wide
range of event scheduling distributions.

D. TIts performance for removal of arbitrary
event notices is equal to its performance for
insertion operations.

E. While the storage of event times in the
binary tree nodes is necessary (as described
in paragraph F, above), it has a fortuitous
consequence for operation in virtual memory
systems. In general, event notices tend to
occupy wide ranges of virtual memory; hence,
direct searching of event notices has the
potential for creating a large number of page
faults. By comparison, the binary tree
occupies a limited amount of virtual memory:
typically it is contained in a single page.
Hence, searching of the binary tree causes
limited page faults.

6.2 Testing the GPSS/H Algorithm

The GPSS program of Figure 2, used to test the two
linear search algorithms presented in Sections 2
and 3, was also run using the GPSS/H algorithm.
Test results are shown in Figure 7. While the
superiority of the GPSS/H algorithm is readily
apparent, several observations are in order.

The CPU time per statement-execution increases
only slightly as the size of the event list
increases from 10 to 100, indicating relative
insensitivity to the size of the list.

Although average search lengths are quite short,
maximum search lengths are quite long. Indeed,
for the 100-user case, the maximum search length
exceeds the number of event notices in the event
list. This is explained by the fact that the
adaptive process built into the algorithm
(doubling the size of the binary tree when
necessary) can cause major disruptions.
Fortunately such disruptions occur rarely.

550 James 0. Henriksen

* -
*
*
1 . 1000.0 Y
' O * *
0 0
0 0
500.0 +Infinity
* [Jpca—
1 - \)
-00 . f—— Other ——f 500.0 }—— Other -— 1000.0 | Other ———3= +00
tk——- Notices lt— Notices ~—q lt——Notices

Figure 6: Example Binary Tree

i i tion CPU Time / Number
Number Fumber of Events Insertion Search Lengths Maximum Execu
of Users Scheduled Average Maximum Tree Depth of Statements Executed
10 20045 4.42 12 2 187.85
50 98878 6.47 49 4 187.7;
100 196875 T7.55 107 5 192.8

Figure T: Results Using The GPSS/H Algorithm

7. CONCLUSIONS

The selection of an appropriate event list
algorithm c&an be vitally important to the
execution performace of a simulation. The quality
of the literature on event list algorithms has a
large variance, and it is loaded with claims and
counterclaims, correct and dincorrect, supported
and unsupported. While considerable disagreement
exists among those who have analyzed evenyt list
algorithms, a number of attractive algorithms are
available. Works published as recently as 1982
have erroneously claimed that gemeral purpose
languages fail to incorporate advanced event list
algorithms; however, several implementations of
general-purpose simulation languages now include
advanced event list algorithms, and at least one
guch implementation has been in use since 1977.

‘ACKNOWLEDGEMENT

Thanks go %o Bob Crain for his thoughtful
suggestions which are reflected herein.

BIBLIOGRAPHY

Blackstone, J. H. and Hogg, G. L. (1982), Improved
File Handling for Discrete-Event Models with
Event Cancellation, Simulation, Volume 39,
Number 6, (December, 1982), pp. 201-204.

Blackstone, J. H., Hogg, G. L., and Phillips,
D. T. (1981a), A Two-List Method for
Synchronization of Event Driven Simulation,
Proceedings of the Fourteenth Annual Simulation
Symposium, Tempa, FL, (March, 1981),
pp. 95-101.

Blackstone, J. H., Hogg, G. L., and Phillips,
D. T. (1981b), A Two-List Synchronization
Procedure for Discrete Event Simulation,
Communications of the ACM, Volume 24, Number
12, (December, 1981), pp. 825-829.

Comfort, J. ¢. (1981), The Simulation of a
Microprocessor-Based Event Set Processor,
Proceedings of the Fourteenth Annual Simulation
Symposium, Tampa, FL, (March, 17981), pp. 17-33.

Event List Management - A Tutorial 551

Comfort, J. C. and Miller, A. (1981), The
Simulation of a Pipelined Event Set Processor,
Proceedings of the Winter Simulation
Conference, Atlanta, GA (December, 1981),
pp. 591-597.

Frenta, W. R. (1977), The Process View of
Simulation, North-Holland, New York, NY.

Franta, W. R. and Maly, K. (1977), An Efficient
Data Structure for the Simulation Event Set,
Communications of the ACM, Veolume 20, Number 8,
(August, 1977), pp. 596-602.

Franta, W. R. and Maly, K. (1978), A Comparison of
Heaps and the TL Structure for the Simulation
Bvent Set, Communications of the ACM, Volume
21, Number 10, (October, 1978), pp. 596-602.

Gonnet, G. H. (1976), Heaps Applied to
BEvent-Driven Mechanisms,
Communications of the ACM, Volume 19, Number 7,
(July, 1976), pp. 417-418.

Henriksen, J. 0. (1977), An Improved Events List
Algorithm, Proceedings of the Winter Simulation

Conference, Gaithersburg, MD, December, 1977,
pp. 547-557.

Henriksen, J. 0. and Crain, R. C. (1982),
GPSS/H User's Manual (Second Edition),
Wolverine Software Corporation, 7630 Little
River Turnpike, Annandale, VA 22003.

McCormack, W. M. (1979),
Analysis of Future BEvent Set Algorithms for
Discrete Event Simulation, Ph.D.#Dissertation,
Syracuse University, Syracuse, NY, 1979.

McCormack, W. M. and Sargent, R. G. (1981),
Analysis of Future Event Set Algorithms for
Digcrete Event Simulation, Communications of
the ACM, Volume 24, Number 12, (December,

1981), pp. 801-812.

Pritsker, A. (1979) and Pegden, C. D. (1979),
Introduction to Simulation and SLAM, Halstead
Press (Division of dJohn Wiley and Sons, Inc.),
New York and Systems Publishing Corpoation,

P. 0. Box 2161, West Lafayette, IN

Rodriguez, L.C., Hogg, G. L., and Blackstone,
J. H. (1982), An Empirical Comparison of
Advanced Event File Synchronization Structures,
Proceedings of the Winter Simulation
Conference, San Diego, CA (December, 1982),
pp. 189-194.

Syzgenda, S., Hemming, C. W., and Hemphill, J. M.
(1971), Time Flow Mechanisms for Use in Digital
Logic Simulation, Proceedings of the Winter
Simulation Conference, New York, NY, 1977,
pp. 488-495.

Ulrich, B. G. (1969), Exclusive Simulation
Activity in Digital Networks, Communications of

the ACM, Volume 12, Number 2, (February, 1969),
op. 102-110.

Vaucher, J. G. and Duval, P. (1975), A Comparison
of Simulation Event List Algorithms,
Communications of the ACM, Volume 18, Number 4,

(April, 1975), pp. 223-230.

Wyman, F. P. (1975), Improved Event Scanning
Mechanisms for Discrete Event Simulation,
Communications of the ACM, Volume 18, Number 6,
(June, 1975), pp. 350-353.

