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By using modern system theory to model physical systems, questions concerning
the design, analysis, test, and evaluation of such systems can be answered,
This tutorial will compare the traditional open loop methodalogy of simulation
to the modern closed loop methodology. Advantages and disadvantages of each
methodology will be discussed. Systems will be typed as being deterministic
or stochastic. The use of partial differential equations, ordinary differ-
ential eguations, and algebraic equations to describe the system will be
discussed. In order to solve system questions, the need to solve the
estimation, identi- fication, and control (EIC) problems will be motivated.
The use of the EIC solutions with respect to the traditional open loop
methodology (OLM) and the modern control loop methods (CLM) will be examined.
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1.  INTRODUCTION

The analysis of any physical system must begin

by characterizing the specific process to be
modeled. This characterization must consider

(1) the system type, (2) governing equations of
the process, and (3) system questions to be
answered. Table 1 illustrates these notions.
o

o Types of Systems

Deterministic, i.e., noise-free systemy
Stochastic, i.e., systems with noise

o System Description

Ordinary differential equations
Partial differential equations
Algebraic Equations

o System Questions to be Answered

Solution to governing equations
Estimation

Identification

Control

Table 1: Process Characterization

Systems may be typed as being either determin-
istic or stochastic. A deterministic system is
defined as one that incorporates no uncertainty
and the stochastic type as one that includes
uncertainty in the model. True systems may be

represented by physical laws expressed by partial
differential equations (PDE), ordinary differen-
tial equations (ODE), and algebraic equations
(AE). Hence, the governing equations of the
process must be given by PDE, ODE, AE, or a com-
bination of the three. In the case of the
deterministic type system, the solutions may be
easily obtained. The stochastic system presents
additional concerns.

The solution of a stochastic systems may be
obtained by defining and solving the estimation,
identification, and control (EIC) problems
associated with the given process.

Open-loop methods (OLM) and closed-1oop methods
(CLM) are considered. OLMs are described
generally by a system that lacks feedback from
the operations that are occurring. An OLM is

presented in Figure 1.
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Figure 1: Open-Loop Method
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The open-loop methodology in Figure 1 uses an a
priori data base to provide predictions of out~
puts which are compared with measured data from
the test cell. Results can range from complete
agreement to no agreement at ail. In addition,
the confidence level of results of a given test
is typically low until a large statistical data
base indicates the attributes of the samples.
Typically, as one begins to accumulate test data,
the predictions are adjusted to accommodate these
data. This "knob tweaking" is usually conducted
by methods that are far from being mathematically
rigorous.

Because OLMs have considerable shortcomings, the
need for a more systematic approach has become
evident ih recent years. Modern system theory
provides such an approach based on CLMs that form
the bases. for most applications where feedback
is used to control the system. The CLM is shown
in Figure 2 by using adaptive procedures that
provide a model with quantified confidence .
levels. Modern system theory recognizes the
potential differences in predictions and results
that can be attributed to forcing function
uncertainty, incorrect estimates of constituents
in the governing equations, and the possibility
that the model order i5 insufficient to describe
these systems. The adaptive processor design
attempts Fo accommodate these uncertainties and
to systematically drive the difference between
predictions and test data to a minimum.

‘

Disturbance System Equations
Ideqt;l.fication and Parameters
Predictions
gzii::ted ——Uncertainty
a priom 7N\ Adaptive
Data Base + 1 Methods
Actual b Y
Forces .
nreaseetprl TESE CEll s Model with
Measured Data Quantified
“Error Confidence
Levels

Figure 2: Closed~Loop Method

Having stated that OLM and CLM are essentially
techniques for controlling the comparison error,
the discussion will now turn toward the theore-
tical aspects required to obtain the systematic
results of the CLM. This is introduced by
presentation of the thesis:

"Control of the error which results
from the comparison of data obtained
from the true system to that produced
by an a priori data data base will
result in:

a) obtaining‘a classification set, which
implies the system can be modefed.
This in turn implies that the system
equations can be solved, or

b) denial of the classification set,
which implies that the system cannot
be modeled."

Acceptance of this thesis implies that the solu-
tion of the control problem is imperative to
model the system. ) .

In presenting the thesis, the term "classifica-
tion set" has been introduced. Since thé set
has significant impact, it needs further clar-
ification at this time.

The notion of a set is generally defined in
mathematical terms. In particular, this set may
be given as the set that contains the following
elements: ‘independent variables, dependent
variables, coefficients of the governing equa-
tions, and the sensor output.

Since this definition for the classification set
holds for the propagation of a signal through
any system, the elements of this set will be,
obtained from the equations that govern the
evolution of a specific phenomena. Prior to
doing this, the relationships of estimation,
identification, and control (EIC) to the
c1assification set will be given. For example,
a solution to the estimation problem will yield
estimates of the independent and dependent
variables. Similarly, the solution to control
encompasses the solution of both estimation and

“identification, in addition to providing an

estimate of sensor output. '

Before further clarification of the classifi-
cation set is feasible, the basic elements of
the physical process must be considered. To do
this for the OLM, a lower layer of Figure 1 must
be produced. This second layer is shown in
Figure 3. From this figure, two basic elements
may be defined as being (1) the subsystem under
evaluation, and {2) a measurement device. The
subsystem under investigation produces a
measurable set, M, and the measurement device
acting on this set produces the output, z. In
addition to illustrating the basic elements,
Figure 3 shows the basis for their physical
makeup.
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At this point, the subsystem under evaluation
can be represented in state variable format by:

(1) x(k+1)=A (k+1, k) x (k) +u (k)

where x is defined to be a n x 1 state vector; A
is the n x n system dynamics matrix; and w
accounts for random uncertainties in propagation
of the state.*

In addition, the measurement device may be
modeled by:

z(k+1)=mk+1)+y(k+1)

where the sensor output, z, is given to be a
m x 1 vector sum of the measurement set, m, and
the random sensor uncertainty, v. Since The
sensor output can be considered be a linear
combination of the state, x, the expression:

(2) z(k+1)=H{(k+1)x(k+ 1N +v(k+1)
also may be used to represent the sensor output.

By mathematical representing the system via
equations (1) and {2), further clarification of
the classification set is possible. For
example, the independent and dependent variables
are defined by x; the coefficients of the system
are comprised of the system dynamics A,
measurement matrix H, and variances on w and v
respectively; the sensor output is given by the
vector z.

2.  APPLICATION

As shown in Table 2, the application of the CLM
technique can be used to address a wide range of
problems. For example, consider the application
of the methodology to the attitude determination
problem. This problem may be considered to
belong to a set of problems associated with the
broad category of guidance and control. On the
other hand, application of CLM to the combat
vehicle support plan illustrates its use to a
problem in operational research. This section
will detail the first problem.

Attitude control systems

Attitude determination

Design of a ground control station
Control of large space structures
Robotics development

Magnetic dipole discrimination
Combat vehicle support plan
calibration of system/sensor

Heat diffusion identification

IR signal propagation
Soil-structural dynamics

Acoustic damping

B-52 navigational system assessment

0CO0O0Q0O0OO0OOO0OO0O0O0OO0OO

Table 2: CLM Applications

Consider the problem of attitude determination
of a spinning satellite. The equations which
govern the attitude of the spacecraft in the

*The notation (k) implies that the equations are
evaluated at time ty. -

presence of external torque are given by the
vector egquation

(3) _g;ﬂ

where H is the total angular momentum vector and

T is the vector sum of the external torques.

Since spacecraft orientation is concerned only
with directional changes of H and not magnitude,
equation (1) can be replaced by the two non-
dimensional scalar equations

4) dx, = Ta. dx, = T
(4) aE Ho i Hﬁ

where the left hand side of the equations repre-
sent time translational changes og X1 and X2
respectively, T1 and Tp are respective com-
ponents of T directed along xj and xp, and

Ho is the magnitude of the nominal momentum.
Assume that the time derivative can be approxi-

mated by

dx = x(krl) - x(k)
i3

at

where x(k+1) is the value of x at time k+1, x(k)
the value of x at time k, and At the time
interval between time k+1 and k. Then equation
(4) can be written as

(5) x(k+1) = §(k+1,1) x(k) + 8(k+1,k) u(k)

where the transition matrix, @, is of dimension
2x2; the matrix torque modifier, ©, is of
dimension 2x2; and

X1 = (x] xp); Wl = (T T2)

Having discussed the equations of motion, con-
sider the measurement source, i.e., the measure-
ment is given as a nonlinear function of the
state plus noise

z(k+1) = f(x(k+1)) + v(k+1).

Expansion of the function f in a Taylor series
about a nominal, x*, yields

z(k+1) = z*(k+1) + H(k+1)8x(k+1) + v(k+1)
or
(6) r(k+1) = H(k+1)8x(k+1) + v(k+1)

where the residuals, r, are defined as z minus
z*, and H is the partTal of the vector Tunction

T with respect to x.

Since propagation of the perturbed state must
obey (5), the system to be considered is

described by the residuals, (6), and the
perturbed state x, i.e.,

(7) Sx(k+1) = B(k+1,k)8x(k)
+ 0(k+1,k)[u(k) + w(k)]

The sequence, w(k), describes the random uncer-
tainties associated with Ty and Tp. These
uncertainties are characterized by the covariance
matrix, Q(k)}. Errors in the torques are repre-
sented by u(k).
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At tgjs poéntihone cgn agp]y the Ka]m?n filter (9) x(k+1) = Blk+1) (x*(k)+8x(k)) '
equations to the system described by (6) and {7 - : s k
iiei’ ag§equentga1 gstimate of the perturbed (7, * 9(k+1,k)(gﬁ(k) + (k) +:£K ))
state, 5X, can be obtained utilizing the N )
résiduals r. Having obtained $x, where x* and u* are nominal values of the

value of X is givengb; ined °x, the absolute attitude and Torques respectively. However,

utilization of (9) requires that u be known.

A N
8) x(k#1) = x*(k+1) +8Sx(k+1 .
(8) x(k#1) = xx(k+1) +Oox(k+1) The perturbed value of the torques, u, can be

The state obtained in (8) can now be compared to otained from minimization of an ﬁrror function,
the state obtained by in%e§ration of the nominal E. This cost function is given by .
torques, i.e., equation (5). If there is poor ~o S
agreement between x and X, one would expect to .  (10) E = (x(k#1) - x(k+1))TP-T(X(k+1) - x(k+1)
see trends in the residual data. Trends in the . T 1
residuals are illustrated in Figures 4 and 5. + ut(k)Q-" u(k)
Since the residuals should have noise character-
istics, these trends are undesirable. where the matrix, P, is the covariance matrix of
' . X obtained via the Kalman filter algorithms, and
" Q is the covariance of the noise sequence, W.
o Minimization of (10) results in
“ (11) Suf(k) =
“ ((SxT(k+1) - SxT(k) GT(k+1,k))P=T 8(k1,k))
LT3
. _ (o7 (k+1,k)P1 8(k+1,k) + g H)~!
g L v Having obtained a value for the bias torgues,
Faar M (11) can then be inserted into (9) to yield the
T tnﬂ new integrated state.
waf The previous discussion addressed torques of a
! ' general nature. Specifically, the main source
i of the perturbing torques which tend to alter
el the orientation of a satellite vehicle result
from; 1) gravity gradient torques, 2) solar
a1 T Ea— - +5 % 3 3 m radiation pressure, and 3} interaction of the
* Trae -mouks spacecraft's magnetic moments with the magnetic
field of the earth. Torques resulting from
.. . s s : atmospheric pressure are negligible compared to
Figure 4: ﬁ%i}%ﬂgl SécggiU]tI"g From Nominal the above mentioned forcing functions.
T The torques, T} and T2, discussed previously
asl. . are given explicitly as
ut ) (12) T4 = TsTi + TMAGI + TgGi ‘
arf ‘. L ]’2
wl 3-&3;bﬁ:fi?{5f:}}??;,;x. ) where Ts =  linear combination of the solar
n . _:-. » . N . -'.-:':..:‘o.': -'_: e torques
w " ) LIRS Tmag = sum of magnetic torgues
'éu . WS Tgg = gravity gradient torque.
;u,_ M The solar and magﬁetic torques can be Writtén as
al ¥ (13) Tsp =a. T§1,‘];+b . TiZ,'lg
e (14) TsT2 = a . T(1,2)+b . T(2,2
(15) Tmagl = ¢ » T{3,1)+d . T(4,1)+e . T(5,1)
Wl (16) Tmagz = ¢ » T(3,2)+d . T(4,2)+e . T(5,2)
" , . — = , where the variables, a and b, are nominal param-
. WMo . eters which modify the respective solar torques.
igure 5: Residual rp Resulting From Nominal .
Figur Attitude Vgctor g From Nomina Magnetic torques are computed by
(17) T=Mx8B
‘ ST o where cosd «-sin@ O /c
The reason for poor agreement between (5) and - M ={sing cos8 0 |ld
(8) is due to the absence of the perturbed 0 0 1 {\e
torque, Su, from (5), i.e., the nominal state

given by (5) must be modified by (7) to yield The angle, 0, is the azimuth which relates a
- the corected state -given by platform frame to the body reference frame. This
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platform reference frame is necessitated by the
fact that the vehicle magnetic moments, c, d, .
and e, are measured in a platform frame. The 0z
magnetic field of the earth is represented by
the vector, B. With some manipulation, (15) and
(16) can be obtained from (17). :

The gravity gradient torques, Tggl and Tgg2,
are obtained from

(]8) T =-‘%31r X (I . ]Y-)

where n = gravitational constant
r magnitude of the position vector
from the center of the earth to the
-~ spacecraft
1y = unit vector directed along the
position vector
I = inertia dyadic of the vehicle

-5
Xy DISPLACEMENT

Having defined the perturbing torques, the
pro?]im can be manipulated into the form given 12 " " "~ " o
by (5). ‘ “ '

TIME ~ HOURS

Examination of Figures 4 and 5 imply that the
nominal torque profiles currently employed are Figure 7:
incorrect. These torques can be corrected

utilizing an estimate of the attitude, and mini-
mizing the weighted difference between the esti-
mate and its corresponding nominal. These new 1
torques can then be inserted to yield a modified ”
attitude. Figures 6 and 7 yield a comparison of
the estimated spacecraft orientation with its
nominal. Figures 8 and 9 illustrate the compar-

ison of the corrected attitude with its estimated
orientation.

Comparison of Nominal X2 with the
Estimated Value of X2

Nominal values for the solar torque modifiers
and the magnetic components are given in Table
3. Utilizing these nominals, the error in xj
was found to be primarily due to an error in
T(1,1)-~see Figure 10. The discrepancy in xp
appears to be primarily a function of the error
in T(1,2)--see Figure 11.

X, DISPLACEMENT

. " 3
E] o5 19 13 2 k24 30

TIME = HOURS
1 Figure 8: Comparison of X} and X7 After
Torque Correction has been Applied
os 02
NOMINAL Xy " r
-.-”-"‘ " . Q
oeh ',.;--"" ESTIMATE OF X, 00 Rt
& ..-"""Nf CORRECTED %3
§ o4 5 ~ap
3 g
02 g 4l
03 ot 13 O Zm z: - kg T
TIME — HOURS
. th th -mn ok lln |..l 1" 25 1.0
Figure 6: Comparison of Nominal Xy wi e ) TE—HOUNS
] Estimated Value of Xq Figure 9: Comparison of Xy and Xp After

Torque Correction has been Applied
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NOMINAL VALUE

1.0
1.0
200.0
-50.0
-200.0

PARAMETER

[~ -~

Table 3; Nominal Torque Modifiers
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Figure 10: Cbmparison of Nominal Solar Torque:
Component T{1,1) with Corrected Value

P
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Figure 11: Comparisen of Nominal Solar Torque
Component T(1,2) with Corrected Value

in conclusion, it-can be said that trends are
indicative of modeling errors. In this case,
trends are due to the modeling of the external
torques. This paper illustrates the use of the
Kalman filter algorithms to obtain an estimate
of the attitude based on measurement information.
Having an estimate of the state, the uncertain-
.ties in the torque models can be determined in
order to minimize the difference between the
estimate and the corresponding integrated state.
These biases can then be added to the nominal
attitude to produce a corrected spacecraft
orientation.
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